Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387490268> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4387490268 endingPage "1" @default.
- W4387490268 startingPage "1" @default.
- W4387490268 abstract "As one of the core technologies for 5G systems, massive multiple-input multiple-output (MIMO) introduces dramatic capacity improvements along with very high beamforming and spatial multiplexing gains. When developing efficient physical layer algorithms for massive MIMO systems, message passing is one promising candidate owing to its superior performance. However, as their computational complexity increases dramatically with the problem size, the state-of-the-art message passing algorithms cannot be directly applied to future 6G systems, where an exceedingly large number of antennas are expected to be deployed. To address this issue, we propose a model-driven deep learning (DL) framework, namely the AMP-GNN for massive MIMO transceiver design, by considering the <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>low complexity</i> of the AMP algorithm and <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>adaptability</i> of GNNs. Specifically, the structure of the AMP-GNN network is customized by unfolding the approximate message passing (AMP) algorithm and introducing a graph neural network (GNN) module into it. The permutation equivariance property of AMP-GNN is proved, which enables the AMP-GNN to learn more efficiently and to adapt to different numbers of users. We also reveal the underlying reason why GNNs improve the AMP algorithm from the perspective of expectation propagation, which motivates us to amalgamate various GNNs with different message passing algorithms. In the simulation, we take the massive MIMO detection to exemplify that the proposed AMP-GNN significantly improves the performance of the AMP detector, achieves comparable performance as the state-of-the-art DL-based MIMO detectors, and presents strong robustness to various mismatches." @default.
- W4387490268 created "2023-10-11" @default.
- W4387490268 creator A5025467937 @default.
- W4387490268 creator A5028609226 @default.
- W4387490268 creator A5044818286 @default.
- W4387490268 creator A5060020916 @default.
- W4387490268 creator A5079052203 @default.
- W4387490268 date "2023-01-01" @default.
- W4387490268 modified "2023-10-16" @default.
- W4387490268 title "Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems" @default.
- W4387490268 doi "https://doi.org/10.1109/twc.2023.3321667" @default.
- W4387490268 hasPublicationYear "2023" @default.
- W4387490268 type Work @default.
- W4387490268 citedByCount "0" @default.
- W4387490268 crossrefType "journal-article" @default.
- W4387490268 hasAuthorship W4387490268A5025467937 @default.
- W4387490268 hasAuthorship W4387490268A5028609226 @default.
- W4387490268 hasAuthorship W4387490268A5044818286 @default.
- W4387490268 hasAuthorship W4387490268A5060020916 @default.
- W4387490268 hasAuthorship W4387490268A5079052203 @default.
- W4387490268 hasConcept C11413529 @default.
- W4387490268 hasConcept C120314980 @default.
- W4387490268 hasConcept C127162648 @default.
- W4387490268 hasConcept C132525143 @default.
- W4387490268 hasConcept C154945302 @default.
- W4387490268 hasConcept C207987634 @default.
- W4387490268 hasConcept C31258907 @default.
- W4387490268 hasConcept C41008148 @default.
- W4387490268 hasConcept C50644808 @default.
- W4387490268 hasConcept C555944384 @default.
- W4387490268 hasConcept C76155785 @default.
- W4387490268 hasConcept C80444323 @default.
- W4387490268 hasConcept C854659 @default.
- W4387490268 hasConceptScore W4387490268C11413529 @default.
- W4387490268 hasConceptScore W4387490268C120314980 @default.
- W4387490268 hasConceptScore W4387490268C127162648 @default.
- W4387490268 hasConceptScore W4387490268C132525143 @default.
- W4387490268 hasConceptScore W4387490268C154945302 @default.
- W4387490268 hasConceptScore W4387490268C207987634 @default.
- W4387490268 hasConceptScore W4387490268C31258907 @default.
- W4387490268 hasConceptScore W4387490268C41008148 @default.
- W4387490268 hasConceptScore W4387490268C50644808 @default.
- W4387490268 hasConceptScore W4387490268C555944384 @default.
- W4387490268 hasConceptScore W4387490268C76155785 @default.
- W4387490268 hasConceptScore W4387490268C80444323 @default.
- W4387490268 hasConceptScore W4387490268C854659 @default.
- W4387490268 hasLocation W43874902681 @default.
- W4387490268 hasOpenAccess W4387490268 @default.
- W4387490268 hasPrimaryLocation W43874902681 @default.
- W4387490268 hasRelatedWork W1530347314 @default.
- W4387490268 hasRelatedWork W1783583321 @default.
- W4387490268 hasRelatedWork W2038397443 @default.
- W4387490268 hasRelatedWork W2134852660 @default.
- W4387490268 hasRelatedWork W2157921889 @default.
- W4387490268 hasRelatedWork W2978729728 @default.
- W4387490268 hasRelatedWork W4288966080 @default.
- W4387490268 hasRelatedWork W4291895924 @default.
- W4387490268 hasRelatedWork W4384616438 @default.
- W4387490268 hasRelatedWork W2510374584 @default.
- W4387490268 isParatext "false" @default.
- W4387490268 isRetracted "false" @default.
- W4387490268 workType "article" @default.