Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387490400> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4387490400 endingPage "1" @default.
- W4387490400 startingPage "1" @default.
- W4387490400 abstract "Motor imagery (MI) decoding plays a crucial role in the advancement of electroencephalography (EEG)-based brain-computer interface (BCI) technology. Currently, most researches focus on complex deep learning structures for MI decoding. The growing complexity of networks may result in overfitting and lead to inaccurate decoding outcomes due to the redundant information. To address this limitation and make full use of the multi-domain EEG features, a multi-domain temporal-spatial-frequency convolutional neural network (TSFCNet) is proposed for MI decoding. The proposed network provides a novel mechanism that utilize the spatial and temporal EEG features combined with frequency and time-frequency characteristics. This network enables powerful feature extraction without complicated network structure. Specifically, the TSFCNet first employs the MixConv-Residual block to extract multiscale temporal features from multi-band filtered EEG data. Next, the temporal-spatial-frequency convolution block implements three shallow, parallel and independent convolutional operations in spatial, frequency and time-frequency domain, and captures high discriminative representations from these domains respectively. Finally, these features are effectively aggregated by average pooling layers and variance layers, and the network is trained with the joint supervision of the cross-entropy and the center loss. Our experimental results show that the TSFCNet outperforms the state-of-the-art models with superior classification accuracy and kappa values (82.72% and 0.7695 for dataset BCI competition IV 2a, 86.39% and 0.7324 for dataset BCI competition IV 2b). These competitive results demonstrate that the proposed network is promising for enhancing the decoding performance of MI BCIs." @default.
- W4387490400 created "2023-10-11" @default.
- W4387490400 creator A5015244667 @default.
- W4387490400 creator A5034092220 @default.
- W4387490400 creator A5035535543 @default.
- W4387490400 creator A5048899636 @default.
- W4387490400 creator A5089567141 @default.
- W4387490400 date "2023-01-01" @default.
- W4387490400 modified "2023-10-16" @default.
- W4387490400 title "A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding" @default.
- W4387490400 doi "https://doi.org/10.1109/tnsre.2023.3323325" @default.
- W4387490400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37815970" @default.
- W4387490400 hasPublicationYear "2023" @default.
- W4387490400 type Work @default.
- W4387490400 citedByCount "0" @default.
- W4387490400 crossrefType "journal-article" @default.
- W4387490400 hasAuthorship W4387490400A5015244667 @default.
- W4387490400 hasAuthorship W4387490400A5034092220 @default.
- W4387490400 hasAuthorship W4387490400A5035535543 @default.
- W4387490400 hasAuthorship W4387490400A5048899636 @default.
- W4387490400 hasAuthorship W4387490400A5089567141 @default.
- W4387490400 hasBestOaLocation W43874904001 @default.
- W4387490400 hasConcept C108583219 @default.
- W4387490400 hasConcept C11413529 @default.
- W4387490400 hasConcept C118552586 @default.
- W4387490400 hasConcept C153180895 @default.
- W4387490400 hasConcept C154945302 @default.
- W4387490400 hasConcept C15744967 @default.
- W4387490400 hasConcept C173201364 @default.
- W4387490400 hasConcept C19118579 @default.
- W4387490400 hasConcept C22019652 @default.
- W4387490400 hasConcept C28490314 @default.
- W4387490400 hasConcept C31972630 @default.
- W4387490400 hasConcept C41008148 @default.
- W4387490400 hasConcept C50644808 @default.
- W4387490400 hasConcept C522805319 @default.
- W4387490400 hasConcept C52622490 @default.
- W4387490400 hasConcept C54808283 @default.
- W4387490400 hasConcept C57273362 @default.
- W4387490400 hasConcept C81363708 @default.
- W4387490400 hasConcept C97931131 @default.
- W4387490400 hasConceptScore W4387490400C108583219 @default.
- W4387490400 hasConceptScore W4387490400C11413529 @default.
- W4387490400 hasConceptScore W4387490400C118552586 @default.
- W4387490400 hasConceptScore W4387490400C153180895 @default.
- W4387490400 hasConceptScore W4387490400C154945302 @default.
- W4387490400 hasConceptScore W4387490400C15744967 @default.
- W4387490400 hasConceptScore W4387490400C173201364 @default.
- W4387490400 hasConceptScore W4387490400C19118579 @default.
- W4387490400 hasConceptScore W4387490400C22019652 @default.
- W4387490400 hasConceptScore W4387490400C28490314 @default.
- W4387490400 hasConceptScore W4387490400C31972630 @default.
- W4387490400 hasConceptScore W4387490400C41008148 @default.
- W4387490400 hasConceptScore W4387490400C50644808 @default.
- W4387490400 hasConceptScore W4387490400C522805319 @default.
- W4387490400 hasConceptScore W4387490400C52622490 @default.
- W4387490400 hasConceptScore W4387490400C54808283 @default.
- W4387490400 hasConceptScore W4387490400C57273362 @default.
- W4387490400 hasConceptScore W4387490400C81363708 @default.
- W4387490400 hasConceptScore W4387490400C97931131 @default.
- W4387490400 hasFunder F4320321001 @default.
- W4387490400 hasLocation W43874904001 @default.
- W4387490400 hasLocation W43874904002 @default.
- W4387490400 hasOpenAccess W4387490400 @default.
- W4387490400 hasPrimaryLocation W43874904001 @default.
- W4387490400 hasRelatedWork W1513407214 @default.
- W4387490400 hasRelatedWork W195417223 @default.
- W4387490400 hasRelatedWork W1961545574 @default.
- W4387490400 hasRelatedWork W1977940006 @default.
- W4387490400 hasRelatedWork W1984377984 @default.
- W4387490400 hasRelatedWork W2510077457 @default.
- W4387490400 hasRelatedWork W2887556756 @default.
- W4387490400 hasRelatedWork W2951110009 @default.
- W4387490400 hasRelatedWork W3040691452 @default.
- W4387490400 hasRelatedWork W3045772920 @default.
- W4387490400 isParatext "false" @default.
- W4387490400 isRetracted "false" @default.
- W4387490400 workType "article" @default.