Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387490411> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387490411 endingPage "1" @default.
- W4387490411 startingPage "1" @default.
- W4387490411 abstract "Accurate prediction of photovoltaic (PV) power is the prerequisite for the safe and stable operation of the power grid with high penetration of PV. Despite various machine learning models for forecasting PV power have been developed, their accuracies are generally unstable. Toward this end, this study proposes a novel Stacking ensemble forecast model to improve the precision of day-ahead PV power forecasts. Different from the traditional Stacking model that uses the original training dataset to train the base learners, the proposed model creates multiple sub-training sets from the original training dataset to train the base learners, so as to enhance the diversity of base models and further improve the prediction accuracy. Specifically, in the proposed Stacking ensemble model, four machine learning learners, i.e., generalized regression neural network (GRNN), extreme learning machine (ELM), Elman neural network (ElmanNN), and Long shot-term memory (LSTM) neural network are incorporated, which are trained with the diverse sub-training datasets, and a variety of candidate base models are generated. For those candidate base models, the ones with the best performance are selected and integrated through a meta-model, namely the back-propagation network work (BPNN), to produce the final PV power prediction. The proposed model is evaluated using measured data from a 15kW PV power station in Ashland, Oregon, USA. Results indicate that across three weather scenarios, the performance of the novel Stacking ensemble model consistently outperforms single models and the traditional Stacking ensemble model in terms of the errors for out-of-sample forecasting, which proves the effectiveness of the developed procedure in improving PV power forecasting accuracy." @default.
- W4387490411 created "2023-10-11" @default.
- W4387490411 creator A5005857215 @default.
- W4387490411 creator A5010241534 @default.
- W4387490411 creator A5043541719 @default.
- W4387490411 creator A5058840978 @default.
- W4387490411 date "2023-01-01" @default.
- W4387490411 modified "2023-10-16" @default.
- W4387490411 title "Day-ahead Forecast of Photovoltaic Power Based on A Novel Stacking Ensemble Method" @default.
- W4387490411 doi "https://doi.org/10.1109/access.2023.3323526" @default.
- W4387490411 hasPublicationYear "2023" @default.
- W4387490411 type Work @default.
- W4387490411 citedByCount "0" @default.
- W4387490411 crossrefType "journal-article" @default.
- W4387490411 hasAuthorship W4387490411A5005857215 @default.
- W4387490411 hasAuthorship W4387490411A5010241534 @default.
- W4387490411 hasAuthorship W4387490411A5043541719 @default.
- W4387490411 hasAuthorship W4387490411A5058840978 @default.
- W4387490411 hasBestOaLocation W43874904111 @default.
- W4387490411 hasConcept C119599485 @default.
- W4387490411 hasConcept C119857082 @default.
- W4387490411 hasConcept C119898033 @default.
- W4387490411 hasConcept C121332964 @default.
- W4387490411 hasConcept C124101348 @default.
- W4387490411 hasConcept C127413603 @default.
- W4387490411 hasConcept C154945302 @default.
- W4387490411 hasConcept C2780150128 @default.
- W4387490411 hasConcept C33347731 @default.
- W4387490411 hasConcept C41008148 @default.
- W4387490411 hasConcept C41291067 @default.
- W4387490411 hasConcept C45942800 @default.
- W4387490411 hasConcept C46141821 @default.
- W4387490411 hasConcept C50644808 @default.
- W4387490411 hasConceptScore W4387490411C119599485 @default.
- W4387490411 hasConceptScore W4387490411C119857082 @default.
- W4387490411 hasConceptScore W4387490411C119898033 @default.
- W4387490411 hasConceptScore W4387490411C121332964 @default.
- W4387490411 hasConceptScore W4387490411C124101348 @default.
- W4387490411 hasConceptScore W4387490411C127413603 @default.
- W4387490411 hasConceptScore W4387490411C154945302 @default.
- W4387490411 hasConceptScore W4387490411C2780150128 @default.
- W4387490411 hasConceptScore W4387490411C33347731 @default.
- W4387490411 hasConceptScore W4387490411C41008148 @default.
- W4387490411 hasConceptScore W4387490411C41291067 @default.
- W4387490411 hasConceptScore W4387490411C45942800 @default.
- W4387490411 hasConceptScore W4387490411C46141821 @default.
- W4387490411 hasConceptScore W4387490411C50644808 @default.
- W4387490411 hasLocation W43874904111 @default.
- W4387490411 hasOpenAccess W4387490411 @default.
- W4387490411 hasPrimaryLocation W43874904111 @default.
- W4387490411 hasRelatedWork W1807784185 @default.
- W4387490411 hasRelatedWork W1909207154 @default.
- W4387490411 hasRelatedWork W2794896638 @default.
- W4387490411 hasRelatedWork W3009797526 @default.
- W4387490411 hasRelatedWork W3101614107 @default.
- W4387490411 hasRelatedWork W3124390867 @default.
- W4387490411 hasRelatedWork W3149839747 @default.
- W4387490411 hasRelatedWork W3202800081 @default.
- W4387490411 hasRelatedWork W3204228978 @default.
- W4387490411 hasRelatedWork W45170056 @default.
- W4387490411 isParatext "false" @default.
- W4387490411 isRetracted "false" @default.
- W4387490411 workType "article" @default.