Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387490612> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387490612 endingPage "1" @default.
- W4387490612 startingPage "1" @default.
- W4387490612 abstract "Background: Alzheimer’s disease (AD) is an incurable neurodegenerative disease primarily affecting the elderly population. The therapy of AD depends heavily on an early diagnosis. In this study, our primary objective is to evaluate the classification framework, which combines graph theory and machine learning techniques for functional magnetic resonance imaging (fMRI), to distinguish AD, early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and healthy control (HC). Methods: A novel multi-feature selection method, incorporating the dual graph theoretical approach, is proposed for classification. This method utilizes three different feature selection methods after brain areas selection through graph-theory analyses in 96 subjects with brain parcellation by using the joint human connectome project multimodal parcellation (J-HCPMMP) of 180 areas per hemisphere. Results: The classification results show that the optimal features selected by the minimal redundancy maximal relevance (MRMR) based on support vector machine linear (SVM-linear) from graph measures for 36 areas of 360 areas. The classification accuracies for identifying HC vs. EMCI, HC vs. LMCI, HC vs. AD, EMCI vs. LMCI, LMCI vs. AD, and EMCI vs. AD, are 85.60%, 92.90%, 96.80%, 83.30%, 84.90% and 89.50%, respectively. Conclusion: The results indicate that the combination of graph measures and machine learning in fMRI connectivity analysis might be helpful for the diagnosis of AD, especially the use of local measures, which may better reflect functional changes in local brain regions because of cognitive impairment." @default.
- W4387490612 created "2023-10-11" @default.
- W4387490612 creator A5003707317 @default.
- W4387490612 creator A5011777227 @default.
- W4387490612 creator A5024741363 @default.
- W4387490612 creator A5046323910 @default.
- W4387490612 creator A5053365537 @default.
- W4387490612 creator A5056403746 @default.
- W4387490612 creator A5059289671 @default.
- W4387490612 date "2023-01-01" @default.
- W4387490612 modified "2023-10-12" @default.
- W4387490612 title "Functional Brain Network Measures for Alzheimer’s Disease Classification" @default.
- W4387490612 doi "https://doi.org/10.1109/access.2023.3323250" @default.
- W4387490612 hasPublicationYear "2023" @default.
- W4387490612 type Work @default.
- W4387490612 citedByCount "0" @default.
- W4387490612 crossrefType "journal-article" @default.
- W4387490612 hasAuthorship W4387490612A5003707317 @default.
- W4387490612 hasAuthorship W4387490612A5011777227 @default.
- W4387490612 hasAuthorship W4387490612A5024741363 @default.
- W4387490612 hasAuthorship W4387490612A5046323910 @default.
- W4387490612 hasAuthorship W4387490612A5053365537 @default.
- W4387490612 hasAuthorship W4387490612A5056403746 @default.
- W4387490612 hasAuthorship W4387490612A5059289671 @default.
- W4387490612 hasBestOaLocation W43874906121 @default.
- W4387490612 hasConcept C12267149 @default.
- W4387490612 hasConcept C132525143 @default.
- W4387490612 hasConcept C142724271 @default.
- W4387490612 hasConcept C148483581 @default.
- W4387490612 hasConcept C153180895 @default.
- W4387490612 hasConcept C154945302 @default.
- W4387490612 hasConcept C15744967 @default.
- W4387490612 hasConcept C169760540 @default.
- W4387490612 hasConcept C169900460 @default.
- W4387490612 hasConcept C2779134260 @default.
- W4387490612 hasConcept C2779226451 @default.
- W4387490612 hasConcept C2984915365 @default.
- W4387490612 hasConcept C41008148 @default.
- W4387490612 hasConcept C502032728 @default.
- W4387490612 hasConcept C58693492 @default.
- W4387490612 hasConcept C71924100 @default.
- W4387490612 hasConcept C80444323 @default.
- W4387490612 hasConceptScore W4387490612C12267149 @default.
- W4387490612 hasConceptScore W4387490612C132525143 @default.
- W4387490612 hasConceptScore W4387490612C142724271 @default.
- W4387490612 hasConceptScore W4387490612C148483581 @default.
- W4387490612 hasConceptScore W4387490612C153180895 @default.
- W4387490612 hasConceptScore W4387490612C154945302 @default.
- W4387490612 hasConceptScore W4387490612C15744967 @default.
- W4387490612 hasConceptScore W4387490612C169760540 @default.
- W4387490612 hasConceptScore W4387490612C169900460 @default.
- W4387490612 hasConceptScore W4387490612C2779134260 @default.
- W4387490612 hasConceptScore W4387490612C2779226451 @default.
- W4387490612 hasConceptScore W4387490612C2984915365 @default.
- W4387490612 hasConceptScore W4387490612C41008148 @default.
- W4387490612 hasConceptScore W4387490612C502032728 @default.
- W4387490612 hasConceptScore W4387490612C58693492 @default.
- W4387490612 hasConceptScore W4387490612C71924100 @default.
- W4387490612 hasConceptScore W4387490612C80444323 @default.
- W4387490612 hasFunder F4320321001 @default.
- W4387490612 hasLocation W43874906121 @default.
- W4387490612 hasOpenAccess W4387490612 @default.
- W4387490612 hasPrimaryLocation W43874906121 @default.
- W4387490612 hasRelatedWork W1016623679 @default.
- W4387490612 hasRelatedWork W2027542625 @default.
- W4387490612 hasRelatedWork W2071433170 @default.
- W4387490612 hasRelatedWork W2089784006 @default.
- W4387490612 hasRelatedWork W2102312026 @default.
- W4387490612 hasRelatedWork W2327340211 @default.
- W4387490612 hasRelatedWork W2885663991 @default.
- W4387490612 hasRelatedWork W4292199793 @default.
- W4387490612 hasRelatedWork W2282195379 @default.
- W4387490612 hasRelatedWork W2295388821 @default.
- W4387490612 isParatext "false" @default.
- W4387490612 isRetracted "false" @default.
- W4387490612 workType "article" @default.