Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387491071> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4387491071 endingPage "12" @default.
- W4387491071 startingPage "1" @default.
- W4387491071 abstract "Neural networks (NNs) are quite attractive in creating surrogate models for many signal integrity (SI) applications. NN-based surrogate models offer the benefits of reducing the design cycle time and providing the designer with a quick prototype that can efficiently analyze the performance of the SI task. This article, therefore, proposes a new end-to-end learning approach for surrogate modeling using complex-valued NNs, incorporating higher functionality and better representation. This approach introduces a deep complex dense network ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$mathbb{C}$</tex-math> </inline-formula> DNet), which is built with complex dense blocks to support complex operations using complex-valued weights, and a physically consistent layer to enforce passivity and causality constraints. We also present a robust inverse multiobjective optimization method to minimize the modeling error and optimize the design space parameters. The results show that our model outperforms state-of-the-art deep surrogate models when tasked with forward and inverse learning for a relatively small amount of data. The effectiveness of the proposed approach is demonstrated through two SI design applications, where the model is used to predict broadband <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$S$</tex-math> </inline-formula> -parameters and obtain optimal design space parameters given the desired target specifications." @default.
- W4387491071 created "2023-10-11" @default.
- W4387491071 creator A5004254382 @default.
- W4387491071 creator A5014856409 @default.
- W4387491071 creator A5024880239 @default.
- W4387491071 creator A5085554167 @default.
- W4387491071 date "2023-01-01" @default.
- W4387491071 modified "2023-10-16" @default.
- W4387491071 title "Surrogate Modeling With Complex-Valued Neural Nets for Signal Integrity Applications" @default.
- W4387491071 doi "https://doi.org/10.1109/tmtt.2023.3319835" @default.
- W4387491071 hasPublicationYear "2023" @default.
- W4387491071 type Work @default.
- W4387491071 citedByCount "0" @default.
- W4387491071 crossrefType "journal-article" @default.
- W4387491071 hasAuthorship W4387491071A5004254382 @default.
- W4387491071 hasAuthorship W4387491071A5014856409 @default.
- W4387491071 hasAuthorship W4387491071A5024880239 @default.
- W4387491071 hasAuthorship W4387491071A5085554167 @default.
- W4387491071 hasConcept C108583219 @default.
- W4387491071 hasConcept C11413529 @default.
- W4387491071 hasConcept C119857082 @default.
- W4387491071 hasConcept C131675550 @default.
- W4387491071 hasConcept C154945302 @default.
- W4387491071 hasConcept C17744445 @default.
- W4387491071 hasConcept C199539241 @default.
- W4387491071 hasConcept C207467116 @default.
- W4387491071 hasConcept C2524010 @default.
- W4387491071 hasConcept C2776359362 @default.
- W4387491071 hasConcept C33923547 @default.
- W4387491071 hasConcept C41008148 @default.
- W4387491071 hasConcept C45357846 @default.
- W4387491071 hasConcept C50644808 @default.
- W4387491071 hasConcept C80444323 @default.
- W4387491071 hasConcept C94375191 @default.
- W4387491071 hasConcept C94625758 @default.
- W4387491071 hasConceptScore W4387491071C108583219 @default.
- W4387491071 hasConceptScore W4387491071C11413529 @default.
- W4387491071 hasConceptScore W4387491071C119857082 @default.
- W4387491071 hasConceptScore W4387491071C131675550 @default.
- W4387491071 hasConceptScore W4387491071C154945302 @default.
- W4387491071 hasConceptScore W4387491071C17744445 @default.
- W4387491071 hasConceptScore W4387491071C199539241 @default.
- W4387491071 hasConceptScore W4387491071C207467116 @default.
- W4387491071 hasConceptScore W4387491071C2524010 @default.
- W4387491071 hasConceptScore W4387491071C2776359362 @default.
- W4387491071 hasConceptScore W4387491071C33923547 @default.
- W4387491071 hasConceptScore W4387491071C41008148 @default.
- W4387491071 hasConceptScore W4387491071C45357846 @default.
- W4387491071 hasConceptScore W4387491071C50644808 @default.
- W4387491071 hasConceptScore W4387491071C80444323 @default.
- W4387491071 hasConceptScore W4387491071C94375191 @default.
- W4387491071 hasConceptScore W4387491071C94625758 @default.
- W4387491071 hasLocation W43874910711 @default.
- W4387491071 hasOpenAccess W4387491071 @default.
- W4387491071 hasPrimaryLocation W43874910711 @default.
- W4387491071 hasRelatedWork W149041114 @default.
- W4387491071 hasRelatedWork W1583261078 @default.
- W4387491071 hasRelatedWork W1595229445 @default.
- W4387491071 hasRelatedWork W1965815883 @default.
- W4387491071 hasRelatedWork W2024638892 @default.
- W4387491071 hasRelatedWork W2963177394 @default.
- W4387491071 hasRelatedWork W322408318 @default.
- W4387491071 hasRelatedWork W4298135613 @default.
- W4387491071 hasRelatedWork W4313359513 @default.
- W4387491071 hasRelatedWork W763418848 @default.
- W4387491071 isParatext "false" @default.
- W4387491071 isRetracted "false" @default.
- W4387491071 workType "article" @default.