Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387491179> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4387491179 abstract "In recent years snake and insect attacks have become a huge problem worldwide. Most species have similar colors and shapes, which makes it hard to tell them apart using typical techniques. Similarly, identifying different species of bees and wasps can be challenging, especially for non-experts in the field. Therefore, developing a reliable and effective method for recognizing these animals is essential to reducing the issues caused by snake and insect attacks and supporting wildlife conservation efforts. The proposed method in this research utilizes deep ensemble learning and transfer learning techniques to identify snakes, wasps, and bees accurately. Deep ensemble learning involves combining several machine learning models to make better predictions, and transfer learning is a technique that allows pre-trained models to be re-used for new tasks, saving time and computational resources. The proposed method utilizes deep ensemble learning and uses three base transfer learning models, DenseNet201, MobileN etV2, and InceptionResN etV2, for classification. The study obtained a training accuracy of 93%. The research classified 11 types of snakes, four types of bees, and four types of wasps, including all 19 classes. Moreover, the author developed a mobile application for user interaction and utilized Flask API for the logic tier. The mobile application enables users to take pictures or upload images of a snake, wasp, or bee and identify the species accurately. This feature makes the proposed method more accessible to people who encounter these animals daily. Overall, this research represents a promising step towards developing an accurate and effective system for identifying snakes, wasps, and bees, with practical implications for human safety and biodiversity conservation." @default.
- W4387491179 created "2023-10-11" @default.
- W4387491179 creator A5064345516 @default.
- W4387491179 creator A5093034763 @default.
- W4387491179 date "2023-08-25" @default.
- W4387491179 modified "2023-10-16" @default.
- W4387491179 title "A Deep Ensemble Learning Approach for Venomous & Non-Venomous Serpents and Insect Species Identification" @default.
- W4387491179 cites W2108365736 @default.
- W4387491179 cites W2546748476 @default.
- W4387491179 cites W2897079919 @default.
- W4387491179 cites W2907268230 @default.
- W4387491179 cites W2936818658 @default.
- W4387491179 cites W2965128103 @default.
- W4387491179 cites W3010359637 @default.
- W4387491179 cites W3034028317 @default.
- W4387491179 cites W3126970496 @default.
- W4387491179 cites W3184839442 @default.
- W4387491179 cites W3203417730 @default.
- W4387491179 cites W3212468450 @default.
- W4387491179 cites W4206010002 @default.
- W4387491179 cites W4213065070 @default.
- W4387491179 cites W4214876820 @default.
- W4387491179 cites W4309640110 @default.
- W4387491179 doi "https://doi.org/10.1109/asiancon58793.2023.10270077" @default.
- W4387491179 hasPublicationYear "2023" @default.
- W4387491179 type Work @default.
- W4387491179 citedByCount "0" @default.
- W4387491179 crossrefType "proceedings-article" @default.
- W4387491179 hasAuthorship W4387491179A5064345516 @default.
- W4387491179 hasAuthorship W4387491179A5093034763 @default.
- W4387491179 hasConcept C108583219 @default.
- W4387491179 hasConcept C116834253 @default.
- W4387491179 hasConcept C119857082 @default.
- W4387491179 hasConcept C150899416 @default.
- W4387491179 hasConcept C154945302 @default.
- W4387491179 hasConcept C18903297 @default.
- W4387491179 hasConcept C41008148 @default.
- W4387491179 hasConcept C45942800 @default.
- W4387491179 hasConcept C86803240 @default.
- W4387491179 hasConceptScore W4387491179C108583219 @default.
- W4387491179 hasConceptScore W4387491179C116834253 @default.
- W4387491179 hasConceptScore W4387491179C119857082 @default.
- W4387491179 hasConceptScore W4387491179C150899416 @default.
- W4387491179 hasConceptScore W4387491179C154945302 @default.
- W4387491179 hasConceptScore W4387491179C18903297 @default.
- W4387491179 hasConceptScore W4387491179C41008148 @default.
- W4387491179 hasConceptScore W4387491179C45942800 @default.
- W4387491179 hasConceptScore W4387491179C86803240 @default.
- W4387491179 hasLocation W43874911791 @default.
- W4387491179 hasOpenAccess W4387491179 @default.
- W4387491179 hasPrimaryLocation W43874911791 @default.
- W4387491179 hasRelatedWork W2951211570 @default.
- W4387491179 hasRelatedWork W3023427754 @default.
- W4387491179 hasRelatedWork W3131673289 @default.
- W4387491179 hasRelatedWork W3167935049 @default.
- W4387491179 hasRelatedWork W3192840557 @default.
- W4387491179 hasRelatedWork W4206357785 @default.
- W4387491179 hasRelatedWork W4281381188 @default.
- W4387491179 hasRelatedWork W4375928479 @default.
- W4387491179 hasRelatedWork W4376643315 @default.
- W4387491179 hasRelatedWork W4380075502 @default.
- W4387491179 isParatext "false" @default.
- W4387491179 isRetracted "false" @default.
- W4387491179 workType "article" @default.