Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387491317> ?p ?o ?g. }
- W4387491317 endingPage "24" @default.
- W4387491317 startingPage "1" @default.
- W4387491317 abstract "Cost estimation for software development is crucial for project planning and management. Several regression models have been developed to predict software development costs, using historical datasets of previous projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality of the cost estimation dataset and its suitability to the software development environment. The currently available cost estimation datasets are limited to North American and European environments, leaving a gap in the representation of other economically and technically constrained software industries. In this article, the authors evaluate the performance of regression models using the SEERA dataset, which highly represents these constrained environments. This study provides insights into selecting regression models for cost estimation in software development. It highlights the importance of using appropriate models based on the specific software development model and dataset used in the estimation process. In the performance evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network, RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models, along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and random forest indicated superior performance. However, the elastic net, lasso regression, linear regression, neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation." @default.
- W4387491317 created "2023-10-11" @default.
- W4387491317 creator A5017445382 @default.
- W4387491317 creator A5028324615 @default.
- W4387491317 creator A5040071106 @default.
- W4387491317 creator A5051819567 @default.
- W4387491317 creator A5052913530 @default.
- W4387491317 creator A5070543103 @default.
- W4387491317 creator A5071261948 @default.
- W4387491317 creator A5093027105 @default.
- W4387491317 creator A5093034805 @default.
- W4387491317 date "2023-10-10" @default.
- W4387491317 modified "2023-10-16" @default.
- W4387491317 title "Machine Learning for Accurate Software Development Cost Estimation in Economically and Technically Limited Environments" @default.
- W4387491317 cites W1913850770 @default.
- W4387491317 cites W1971150383 @default.
- W4387491317 cites W2021465213 @default.
- W4387491317 cites W2045705089 @default.
- W4387491317 cites W2620625134 @default.
- W4387491317 cites W2768272122 @default.
- W4387491317 cites W2915189456 @default.
- W4387491317 cites W2946129859 @default.
- W4387491317 cites W2968672211 @default.
- W4387491317 cites W2971534159 @default.
- W4387491317 cites W2974393818 @default.
- W4387491317 cites W2990572277 @default.
- W4387491317 cites W3008629612 @default.
- W4387491317 cites W3010790678 @default.
- W4387491317 cites W3018035710 @default.
- W4387491317 cites W3021444350 @default.
- W4387491317 cites W3026672303 @default.
- W4387491317 cites W3104076237 @default.
- W4387491317 cites W3110197149 @default.
- W4387491317 cites W3115716217 @default.
- W4387491317 cites W3126778811 @default.
- W4387491317 cites W3126900416 @default.
- W4387491317 cites W3164552197 @default.
- W4387491317 cites W3176118578 @default.
- W4387491317 doi "https://doi.org/10.4018/ijssci.331753" @default.
- W4387491317 hasPublicationYear "2023" @default.
- W4387491317 type Work @default.
- W4387491317 citedByCount "0" @default.
- W4387491317 crossrefType "journal-article" @default.
- W4387491317 hasAuthorship W4387491317A5017445382 @default.
- W4387491317 hasAuthorship W4387491317A5028324615 @default.
- W4387491317 hasAuthorship W4387491317A5040071106 @default.
- W4387491317 hasAuthorship W4387491317A5051819567 @default.
- W4387491317 hasAuthorship W4387491317A5052913530 @default.
- W4387491317 hasAuthorship W4387491317A5070543103 @default.
- W4387491317 hasAuthorship W4387491317A5071261948 @default.
- W4387491317 hasAuthorship W4387491317A5093027105 @default.
- W4387491317 hasAuthorship W4387491317A5093034805 @default.
- W4387491317 hasBestOaLocation W43874913171 @default.
- W4387491317 hasConcept C105795698 @default.
- W4387491317 hasConcept C119857082 @default.
- W4387491317 hasConcept C120068334 @default.
- W4387491317 hasConcept C12267149 @default.
- W4387491317 hasConcept C124101348 @default.
- W4387491317 hasConcept C127413603 @default.
- W4387491317 hasConcept C136764020 @default.
- W4387491317 hasConcept C152877465 @default.
- W4387491317 hasConcept C154945302 @default.
- W4387491317 hasConcept C169258074 @default.
- W4387491317 hasConcept C199360897 @default.
- W4387491317 hasConcept C201995342 @default.
- W4387491317 hasConcept C2777904410 @default.
- W4387491317 hasConcept C32224588 @default.
- W4387491317 hasConcept C33923547 @default.
- W4387491317 hasConcept C37616216 @default.
- W4387491317 hasConcept C41008148 @default.
- W4387491317 hasConcept C48921125 @default.
- W4387491317 hasConcept C50644808 @default.
- W4387491317 hasConcept C529173508 @default.
- W4387491317 hasConcept C83546350 @default.
- W4387491317 hasConcept C93983250 @default.
- W4387491317 hasConcept C96250715 @default.
- W4387491317 hasConceptScore W4387491317C105795698 @default.
- W4387491317 hasConceptScore W4387491317C119857082 @default.
- W4387491317 hasConceptScore W4387491317C120068334 @default.
- W4387491317 hasConceptScore W4387491317C12267149 @default.
- W4387491317 hasConceptScore W4387491317C124101348 @default.
- W4387491317 hasConceptScore W4387491317C127413603 @default.
- W4387491317 hasConceptScore W4387491317C136764020 @default.
- W4387491317 hasConceptScore W4387491317C152877465 @default.
- W4387491317 hasConceptScore W4387491317C154945302 @default.
- W4387491317 hasConceptScore W4387491317C169258074 @default.
- W4387491317 hasConceptScore W4387491317C199360897 @default.
- W4387491317 hasConceptScore W4387491317C201995342 @default.
- W4387491317 hasConceptScore W4387491317C2777904410 @default.
- W4387491317 hasConceptScore W4387491317C32224588 @default.
- W4387491317 hasConceptScore W4387491317C33923547 @default.
- W4387491317 hasConceptScore W4387491317C37616216 @default.
- W4387491317 hasConceptScore W4387491317C41008148 @default.
- W4387491317 hasConceptScore W4387491317C48921125 @default.
- W4387491317 hasConceptScore W4387491317C50644808 @default.
- W4387491317 hasConceptScore W4387491317C529173508 @default.
- W4387491317 hasConceptScore W4387491317C83546350 @default.
- W4387491317 hasConceptScore W4387491317C93983250 @default.