Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387491445> ?p ?o ?g. }
- W4387491445 endingPage "100294" @default.
- W4387491445 startingPage "100294" @default.
- W4387491445 abstract "Accurate and reliable prediction of the future capacity degradation of lithium-ion batteries is crucial for their applications in electric vehicles. Recent publications have highlighted the effectiveness of deep learning, in particular, in generating precise forecasts regarding the aging patterns. However, large quantities of training data covering various aging behaviors are required to train such models effectively. Collecting such a large database centrally is not feasible due to privacy and data communication restrictions of data owners, such as testing facilities or fleet operators. Federated learning provides a solution to this open issue. A framework, which incorporates federated learning into the training of a data-based battery aging model, is presented in this paper. The benefit of federated learning is that even data owners with sensible information can participate in a collaborative model training, since the model training is only conducted locally and all the data remains local and does not have to be disclosed. Thus, more data owners are likely to participate in this collaborative training. This will improve the prediction performance due to the enlarged dataset that can be utilized for the model training. This work shows that the prediction accuracy of the model trained with federated learning is only slightly worse than the prediction results obtained by the ideal case in which all aging data is stored in a central database. A sensitivity analysis is presented to prove the robustness of federated learning even if the datasets between participating data owners are highly imbalanced or exhibit different aging behaviors. Within exemplary scenarios, it is shown that individual data holders can reduce their prediction errors from MAPEmean=7.07% to MAPEmean=1.10% by participating in the proposed federated learning-based framework." @default.
- W4387491445 created "2023-10-11" @default.
- W4387491445 creator A5001716677 @default.
- W4387491445 creator A5043196620 @default.
- W4387491445 creator A5079718896 @default.
- W4387491445 creator A5090602274 @default.
- W4387491445 creator A5093034828 @default.
- W4387491445 date "2023-10-01" @default.
- W4387491445 modified "2023-10-12" @default.
- W4387491445 title "Collaborative training of deep neural networks for the lithium-ion battery aging prediction with federated learning" @default.
- W4387491445 cites W1979716586 @default.
- W4387491445 cites W2064675550 @default.
- W4387491445 cites W2077937117 @default.
- W4387491445 cites W2563343938 @default.
- W4387491445 cites W2765893638 @default.
- W4387491445 cites W2924382816 @default.
- W4387491445 cites W2967686386 @default.
- W4387491445 cites W3001479960 @default.
- W4387491445 cites W3043289899 @default.
- W4387491445 cites W3084390073 @default.
- W4387491445 cites W3102672074 @default.
- W4387491445 cites W3102947106 @default.
- W4387491445 cites W3103802018 @default.
- W4387491445 cites W3121464064 @default.
- W4387491445 cites W3135514141 @default.
- W4387491445 cites W3135951110 @default.
- W4387491445 cites W3140993386 @default.
- W4387491445 cites W3159080474 @default.
- W4387491445 cites W3171353223 @default.
- W4387491445 cites W3187830731 @default.
- W4387491445 cites W3197516882 @default.
- W4387491445 cites W3200775191 @default.
- W4387491445 cites W3202098842 @default.
- W4387491445 cites W3214094275 @default.
- W4387491445 cites W4206686719 @default.
- W4387491445 cites W4213025374 @default.
- W4387491445 cites W4224022076 @default.
- W4387491445 cites W4224267570 @default.
- W4387491445 cites W4293150078 @default.
- W4387491445 cites W4312754166 @default.
- W4387491445 cites W4320351978 @default.
- W4387491445 cites W4362465173 @default.
- W4387491445 cites W4362696213 @default.
- W4387491445 cites W4363651729 @default.
- W4387491445 cites W4383617503 @default.
- W4387491445 cites W4385462860 @default.
- W4387491445 cites W4386102763 @default.
- W4387491445 doi "https://doi.org/10.1016/j.etran.2023.100294" @default.
- W4387491445 hasPublicationYear "2023" @default.
- W4387491445 type Work @default.
- W4387491445 citedByCount "0" @default.
- W4387491445 crossrefType "journal-article" @default.
- W4387491445 hasAuthorship W4387491445A5001716677 @default.
- W4387491445 hasAuthorship W4387491445A5043196620 @default.
- W4387491445 hasAuthorship W4387491445A5079718896 @default.
- W4387491445 hasAuthorship W4387491445A5090602274 @default.
- W4387491445 hasAuthorship W4387491445A5093034828 @default.
- W4387491445 hasConcept C104317684 @default.
- W4387491445 hasConcept C108583219 @default.
- W4387491445 hasConcept C119857082 @default.
- W4387491445 hasConcept C119898033 @default.
- W4387491445 hasConcept C121332964 @default.
- W4387491445 hasConcept C153294291 @default.
- W4387491445 hasConcept C154945302 @default.
- W4387491445 hasConcept C185592680 @default.
- W4387491445 hasConcept C2777211547 @default.
- W4387491445 hasConcept C2992525071 @default.
- W4387491445 hasConcept C41008148 @default.
- W4387491445 hasConcept C50644808 @default.
- W4387491445 hasConcept C51632099 @default.
- W4387491445 hasConcept C55493867 @default.
- W4387491445 hasConcept C63479239 @default.
- W4387491445 hasConceptScore W4387491445C104317684 @default.
- W4387491445 hasConceptScore W4387491445C108583219 @default.
- W4387491445 hasConceptScore W4387491445C119857082 @default.
- W4387491445 hasConceptScore W4387491445C119898033 @default.
- W4387491445 hasConceptScore W4387491445C121332964 @default.
- W4387491445 hasConceptScore W4387491445C153294291 @default.
- W4387491445 hasConceptScore W4387491445C154945302 @default.
- W4387491445 hasConceptScore W4387491445C185592680 @default.
- W4387491445 hasConceptScore W4387491445C2777211547 @default.
- W4387491445 hasConceptScore W4387491445C2992525071 @default.
- W4387491445 hasConceptScore W4387491445C41008148 @default.
- W4387491445 hasConceptScore W4387491445C50644808 @default.
- W4387491445 hasConceptScore W4387491445C51632099 @default.
- W4387491445 hasConceptScore W4387491445C55493867 @default.
- W4387491445 hasConceptScore W4387491445C63479239 @default.
- W4387491445 hasLocation W43874914451 @default.
- W4387491445 hasOpenAccess W4387491445 @default.
- W4387491445 hasPrimaryLocation W43874914451 @default.
- W4387491445 hasRelatedWork W2777914285 @default.
- W4387491445 hasRelatedWork W3000197790 @default.
- W4387491445 hasRelatedWork W3013363440 @default.
- W4387491445 hasRelatedWork W3035927627 @default.
- W4387491445 hasRelatedWork W3080832531 @default.
- W4387491445 hasRelatedWork W4214626077 @default.
- W4387491445 hasRelatedWork W4287823391 @default.
- W4387491445 hasRelatedWork W4298221930 @default.