Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387492010> ?p ?o ?g. }
- W4387492010 endingPage "128115" @default.
- W4387492010 startingPage "128115" @default.
- W4387492010 abstract "Urban tree canopies are fundamental to mitigating the impacts of climate change within cities as well as providing a range of other important ecosystem, health, and amenity benefits. However, urban tree planting initiatives do not typically utilize data about both the horizontal and vertical dimensions of the tree canopy, despite height being a critical determinant of the quality and value of urban canopy cover. We present a novel pipeline that uses airborne LiDAR data to train a multi-task machine learning model to generate estimates of both canopy cover and height in urban areas. We apply this to multi-source multi-spectral imagery for the case study of Chicago, USA. Our results indicate that a multi-task UNet convolutional neural network can be used to generate reliable estimates of canopy cover and height from aerial and satellite imagery. We then use these canopy estimates to allocate 75,000 trees from Chicago’s recent green initiative under four scenarios, minimizing the urban heat island effect and then optimizing for an equitable canopy distribution, comparing results when only canopy cover is used, and when both canopy cover and height are considered. Through the introduction of this novel pipeline, we show that including canopy height within decision-making processes allows the distribution of new trees to be optimised to further reduce the urban heat island effect in localities where trees have the highest cooling potential and allows trees to be more equitably distributed to communities with lower quality canopies." @default.
- W4387492010 created "2023-10-11" @default.
- W4387492010 creator A5003763359 @default.
- W4387492010 creator A5044033108 @default.
- W4387492010 creator A5076939168 @default.
- W4387492010 date "2023-10-01" @default.
- W4387492010 modified "2023-10-16" @default.
- W4387492010 title "Monitoring canopy quality and improving equitable outcomes of urban tree planting using LiDAR and machine learning" @default.
- W4387492010 cites W1168120963 @default.
- W4387492010 cites W1490840755 @default.
- W4387492010 cites W1578130959 @default.
- W4387492010 cites W1586626383 @default.
- W4387492010 cites W1594790056 @default.
- W4387492010 cites W1786155944 @default.
- W4387492010 cites W1967330083 @default.
- W4387492010 cites W1969087971 @default.
- W4387492010 cites W1978598543 @default.
- W4387492010 cites W2006698957 @default.
- W4387492010 cites W2027699181 @default.
- W4387492010 cites W2031934268 @default.
- W4387492010 cites W2033577306 @default.
- W4387492010 cites W2039470047 @default.
- W4387492010 cites W2047120335 @default.
- W4387492010 cites W2063286310 @default.
- W4387492010 cites W2068340869 @default.
- W4387492010 cites W2094450127 @default.
- W4387492010 cites W2102411835 @default.
- W4387492010 cites W2102417376 @default.
- W4387492010 cites W2109633092 @default.
- W4387492010 cites W2117504085 @default.
- W4387492010 cites W2127476821 @default.
- W4387492010 cites W2130115864 @default.
- W4387492010 cites W2157665222 @default.
- W4387492010 cites W2157776621 @default.
- W4387492010 cites W2161241309 @default.
- W4387492010 cites W2296045491 @default.
- W4387492010 cites W2315994349 @default.
- W4387492010 cites W2518823763 @default.
- W4387492010 cites W2564343013 @default.
- W4387492010 cites W2593931948 @default.
- W4387492010 cites W2765841114 @default.
- W4387492010 cites W2917220860 @default.
- W4387492010 cites W2923210967 @default.
- W4387492010 cites W2952142982 @default.
- W4387492010 cites W2969949594 @default.
- W4387492010 cites W2995277096 @default.
- W4387492010 cites W3008002104 @default.
- W4387492010 cites W3033650189 @default.
- W4387492010 cites W3036070571 @default.
- W4387492010 cites W3043017036 @default.
- W4387492010 cites W3048486232 @default.
- W4387492010 cites W3081684346 @default.
- W4387492010 cites W3088507381 @default.
- W4387492010 cites W3127723844 @default.
- W4387492010 cites W3128065627 @default.
- W4387492010 cites W3139378816 @default.
- W4387492010 cites W3176584092 @default.
- W4387492010 cites W3182836367 @default.
- W4387492010 cites W3216454795 @default.
- W4387492010 cites W4205885561 @default.
- W4387492010 cites W4210591138 @default.
- W4387492010 cites W4213266766 @default.
- W4387492010 cites W4280537483 @default.
- W4387492010 cites W4285802880 @default.
- W4387492010 cites W4288053049 @default.
- W4387492010 cites W4310013514 @default.
- W4387492010 cites W4321371655 @default.
- W4387492010 cites W4353095435 @default.
- W4387492010 cites W4362452764 @default.
- W4387492010 cites W4366978106 @default.
- W4387492010 doi "https://doi.org/10.1016/j.ufug.2023.128115" @default.
- W4387492010 hasPublicationYear "2023" @default.
- W4387492010 type Work @default.
- W4387492010 citedByCount "0" @default.
- W4387492010 crossrefType "journal-article" @default.
- W4387492010 hasAuthorship W4387492010A5003763359 @default.
- W4387492010 hasAuthorship W4387492010A5044033108 @default.
- W4387492010 hasAuthorship W4387492010A5076939168 @default.
- W4387492010 hasConcept C101000010 @default.
- W4387492010 hasConcept C110872660 @default.
- W4387492010 hasConcept C113174947 @default.
- W4387492010 hasConcept C134306372 @default.
- W4387492010 hasConcept C166957645 @default.
- W4387492010 hasConcept C18903297 @default.
- W4387492010 hasConcept C205649164 @default.
- W4387492010 hasConcept C20664614 @default.
- W4387492010 hasConcept C2776426263 @default.
- W4387492010 hasConcept C2780977904 @default.
- W4387492010 hasConcept C33923547 @default.
- W4387492010 hasConcept C39432304 @default.
- W4387492010 hasConcept C39807119 @default.
- W4387492010 hasConcept C39853841 @default.
- W4387492010 hasConcept C51399673 @default.
- W4387492010 hasConcept C54286561 @default.
- W4387492010 hasConcept C58941895 @default.
- W4387492010 hasConcept C62649853 @default.
- W4387492010 hasConcept C86803240 @default.
- W4387492010 hasConcept C97137747 @default.