Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387492251> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387492251 endingPage "20" @default.
- W4387492251 startingPage "1" @default.
- W4387492251 abstract "We introduce and describe an unsupervised text-analytic method which we hypothesize could help an analyst seeking to make sense of the information landscape to be able to pinpoint, from a high level, the sources of fringe narratives and beliefs. The method is premised on the idea set forth in [1] that cults can often be recognized ‘in the wild’ through their distinctive vocabulary. Building on concepts from unsupervised learning, we generalize this idea to posit that even if we did not know a priori which particular ‘distinctive vocabulary’ identified an as-yet unknown ‘fringe belief’, the texts which are representative of ‘fringe’ beliefs should, in general, stand out from the ‘mainstream’ of text when anomaly detection techniques are applied. We test our hypothesis first by constructing an artificial dataset in which we hand-select 27 snippets of text representative of a set of ‘fringe’ beliefs about Russia and approximately the length of Twitter posts, add approximately 20,000 Twitter posts gathered using ‘neutral’ words relevant to the topic of the 27 texts, and then applying our technique while withholding from it which source each text came from. We find that the technique can indeed direct the attention of the analyst to the 27 texts, the ‘needle in the haystack’. We then test the hypothesis again by applying the technique to 2,838 articles from Russian-language media sources in 2022, including three based in Moscow, and one which relocated to Latvia in 2014 to escape Kremlin control and censorship. We hypothesize that in the Russian news media landscape, the independent media organization should appear as ‘fringe’. Again, our hypothesis is confirmed. There were also some surprises in the results, which we discuss—along with how related techniques can also pinpoint what about the ‘fringe’ in each case differentiates it from the mainstream." @default.
- W4387492251 created "2023-10-11" @default.
- W4387492251 creator A5032518372 @default.
- W4387492251 creator A5059609798 @default.
- W4387492251 creator A5075244361 @default.
- W4387492251 date "2023-01-01" @default.
- W4387492251 modified "2023-10-16" @default.
- W4387492251 title "A Method to Differentiate ‘Fringe’ and ‘Mainstream’ Beliefs, and Its Application to Narratives on Russia, Ukraine, and Putin’s 2022 War" @default.
- W4387492251 cites W2019870870 @default.
- W4387492251 cites W2147152072 @default.
- W4387492251 cites W2273695848 @default.
- W4387492251 cites W2469199904 @default.
- W4387492251 cites W2622720468 @default.
- W4387492251 cites W2767750958 @default.
- W4387492251 cites W2810327175 @default.
- W4387492251 doi "https://doi.org/10.1007/978-3-031-37553-8_1" @default.
- W4387492251 hasPublicationYear "2023" @default.
- W4387492251 type Work @default.
- W4387492251 citedByCount "0" @default.
- W4387492251 crossrefType "book-chapter" @default.
- W4387492251 hasAuthorship W4387492251A5032518372 @default.
- W4387492251 hasAuthorship W4387492251A5059609798 @default.
- W4387492251 hasAuthorship W4387492251A5075244361 @default.
- W4387492251 hasConcept C13424479 @default.
- W4387492251 hasConcept C138885662 @default.
- W4387492251 hasConcept C151730666 @default.
- W4387492251 hasConcept C154945302 @default.
- W4387492251 hasConcept C177264268 @default.
- W4387492251 hasConcept C17744445 @default.
- W4387492251 hasConcept C199033989 @default.
- W4387492251 hasConcept C199360897 @default.
- W4387492251 hasConcept C199539241 @default.
- W4387492251 hasConcept C2777267654 @default.
- W4387492251 hasConcept C2777601683 @default.
- W4387492251 hasConcept C2777617010 @default.
- W4387492251 hasConcept C41008148 @default.
- W4387492251 hasConcept C41895202 @default.
- W4387492251 hasConcept C86803240 @default.
- W4387492251 hasConceptScore W4387492251C13424479 @default.
- W4387492251 hasConceptScore W4387492251C138885662 @default.
- W4387492251 hasConceptScore W4387492251C151730666 @default.
- W4387492251 hasConceptScore W4387492251C154945302 @default.
- W4387492251 hasConceptScore W4387492251C177264268 @default.
- W4387492251 hasConceptScore W4387492251C17744445 @default.
- W4387492251 hasConceptScore W4387492251C199033989 @default.
- W4387492251 hasConceptScore W4387492251C199360897 @default.
- W4387492251 hasConceptScore W4387492251C199539241 @default.
- W4387492251 hasConceptScore W4387492251C2777267654 @default.
- W4387492251 hasConceptScore W4387492251C2777601683 @default.
- W4387492251 hasConceptScore W4387492251C2777617010 @default.
- W4387492251 hasConceptScore W4387492251C41008148 @default.
- W4387492251 hasConceptScore W4387492251C41895202 @default.
- W4387492251 hasConceptScore W4387492251C86803240 @default.
- W4387492251 hasLocation W43874922511 @default.
- W4387492251 hasOpenAccess W4387492251 @default.
- W4387492251 hasPrimaryLocation W43874922511 @default.
- W4387492251 hasRelatedWork W1736550718 @default.
- W4387492251 hasRelatedWork W1965563707 @default.
- W4387492251 hasRelatedWork W1972480475 @default.
- W4387492251 hasRelatedWork W2479343091 @default.
- W4387492251 hasRelatedWork W2808729870 @default.
- W4387492251 hasRelatedWork W3174858427 @default.
- W4387492251 hasRelatedWork W4210692028 @default.
- W4387492251 hasRelatedWork W4253878822 @default.
- W4387492251 hasRelatedWork W4253922839 @default.
- W4387492251 hasRelatedWork W601095852 @default.
- W4387492251 isParatext "false" @default.
- W4387492251 isRetracted "false" @default.
- W4387492251 workType "book-chapter" @default.