Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387494025> ?p ?o ?g. }
- W4387494025 endingPage "217" @default.
- W4387494025 startingPage "217" @default.
- W4387494025 abstract "Ultrasound (US) imaging is used in the diagnosis and monitoring of COVID-19 and breast cancer. The presence of Speckle Noise (SN) is a downside to its usage since it decreases lesion conspicuity. Filters can be used to remove SN, but they involve time-consuming computation and parameter tuning. Several researchers have been developing complex Deep Learning (DL) models (150,000–500,000 parameters) for the removal of simulated added SN, without focusing on the real-world application of removing naturally occurring SN from original US images. Here, a simpler (<30,000 parameters) Convolutional Neural Network Autoencoder (CNN-AE) to remove SN from US images of the breast and lung is proposed. In order to do so, simulated SN was added to such US images, considering four different noise levels (σ = 0.05, 0.1, 0.2, 0.5). The original US images (N = 1227, breast + lung) were given as targets, while the noised US images served as the input. The Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) were used to compare the output of the CNN-AE and of the Median and Lee filters with the original US images. The CNN-AE outperformed the use of these classic filters for every noise level. To see how well the model removed naturally occurring SN from the original US images and to test its real-world applicability, a CNN model that differentiates malignant from benign breast lesions was developed. Several inputs were used to train the model (original, CNN-AE denoised, filter denoised, and noised US images). The use of the original US images resulted in the highest Matthews Correlation Coefficient (MCC) and accuracy values, while for sensitivity and negative predicted values, the CNN-AE-denoised US images (for higher σ values) achieved the best results. Our results demonstrate that the application of a simpler DL model for SN removal results in fewer misclassifications of malignant breast lesions in comparison to the use of original US images and the application of the Median filter. This shows that the use of a less-complex model and the focus on clinical practice applicability are relevant and should be considered in future studies." @default.
- W4387494025 created "2023-10-11" @default.
- W4387494025 creator A5002436291 @default.
- W4387494025 creator A5015697654 @default.
- W4387494025 creator A5024059089 @default.
- W4387494025 creator A5033390848 @default.
- W4387494025 creator A5038728393 @default.
- W4387494025 creator A5041536257 @default.
- W4387494025 creator A5050562159 @default.
- W4387494025 date "2023-10-10" @default.
- W4387494025 modified "2023-10-12" @default.
- W4387494025 title "Make It Less Complex: Autoencoder for Speckle Noise Removal—Application to Breast and Lung Ultrasound" @default.
- W4387494025 cites W1500359668 @default.
- W4387494025 cites W1971315309 @default.
- W4387494025 cites W2005506998 @default.
- W4387494025 cites W2096413230 @default.
- W4387494025 cites W2102166818 @default.
- W4387494025 cites W2122369908 @default.
- W4387494025 cites W2130094715 @default.
- W4387494025 cites W2133665775 @default.
- W4387494025 cites W2136473316 @default.
- W4387494025 cites W2171179006 @default.
- W4387494025 cites W2294610902 @default.
- W4387494025 cites W2302255633 @default.
- W4387494025 cites W2704118014 @default.
- W4387494025 cites W2758743102 @default.
- W4387494025 cites W2763615846 @default.
- W4387494025 cites W2801665024 @default.
- W4387494025 cites W2902000980 @default.
- W4387494025 cites W2919234133 @default.
- W4387494025 cites W2929055273 @default.
- W4387494025 cites W2991372685 @default.
- W4387494025 cites W3000472254 @default.
- W4387494025 cites W3025778007 @default.
- W4387494025 cites W3128411484 @default.
- W4387494025 cites W3156411808 @default.
- W4387494025 cites W3170143802 @default.
- W4387494025 cites W3178773782 @default.
- W4387494025 cites W4200456475 @default.
- W4387494025 cites W4205328913 @default.
- W4387494025 cites W4225005483 @default.
- W4387494025 cites W4226021186 @default.
- W4387494025 cites W4235615630 @default.
- W4387494025 cites W4294189863 @default.
- W4387494025 cites W4320916956 @default.
- W4387494025 doi "https://doi.org/10.3390/jimaging9100217" @default.
- W4387494025 hasPublicationYear "2023" @default.
- W4387494025 type Work @default.
- W4387494025 citedByCount "0" @default.
- W4387494025 crossrefType "journal-article" @default.
- W4387494025 hasAuthorship W4387494025A5002436291 @default.
- W4387494025 hasAuthorship W4387494025A5015697654 @default.
- W4387494025 hasAuthorship W4387494025A5024059089 @default.
- W4387494025 hasAuthorship W4387494025A5033390848 @default.
- W4387494025 hasAuthorship W4387494025A5038728393 @default.
- W4387494025 hasAuthorship W4387494025A5041536257 @default.
- W4387494025 hasAuthorship W4387494025A5050562159 @default.
- W4387494025 hasBestOaLocation W43874940251 @default.
- W4387494025 hasConcept C101738243 @default.
- W4387494025 hasConcept C102290492 @default.
- W4387494025 hasConcept C103278499 @default.
- W4387494025 hasConcept C106131492 @default.
- W4387494025 hasConcept C108583219 @default.
- W4387494025 hasConcept C115961682 @default.
- W4387494025 hasConcept C121608353 @default.
- W4387494025 hasConcept C126322002 @default.
- W4387494025 hasConcept C126838900 @default.
- W4387494025 hasConcept C143753070 @default.
- W4387494025 hasConcept C153180895 @default.
- W4387494025 hasConcept C154945302 @default.
- W4387494025 hasConcept C180940675 @default.
- W4387494025 hasConcept C2777423100 @default.
- W4387494025 hasConcept C2777432617 @default.
- W4387494025 hasConcept C2780472235 @default.
- W4387494025 hasConcept C31972630 @default.
- W4387494025 hasConcept C41008148 @default.
- W4387494025 hasConcept C530470458 @default.
- W4387494025 hasConcept C71924100 @default.
- W4387494025 hasConcept C81363708 @default.
- W4387494025 hasConcept C99498987 @default.
- W4387494025 hasConceptScore W4387494025C101738243 @default.
- W4387494025 hasConceptScore W4387494025C102290492 @default.
- W4387494025 hasConceptScore W4387494025C103278499 @default.
- W4387494025 hasConceptScore W4387494025C106131492 @default.
- W4387494025 hasConceptScore W4387494025C108583219 @default.
- W4387494025 hasConceptScore W4387494025C115961682 @default.
- W4387494025 hasConceptScore W4387494025C121608353 @default.
- W4387494025 hasConceptScore W4387494025C126322002 @default.
- W4387494025 hasConceptScore W4387494025C126838900 @default.
- W4387494025 hasConceptScore W4387494025C143753070 @default.
- W4387494025 hasConceptScore W4387494025C153180895 @default.
- W4387494025 hasConceptScore W4387494025C154945302 @default.
- W4387494025 hasConceptScore W4387494025C180940675 @default.
- W4387494025 hasConceptScore W4387494025C2777423100 @default.
- W4387494025 hasConceptScore W4387494025C2777432617 @default.
- W4387494025 hasConceptScore W4387494025C2780472235 @default.
- W4387494025 hasConceptScore W4387494025C31972630 @default.
- W4387494025 hasConceptScore W4387494025C41008148 @default.