Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387494619> ?p ?o ?g. }
- W4387494619 endingPage "105844" @default.
- W4387494619 startingPage "105844" @default.
- W4387494619 abstract "The Newmark-type predictive models are extensively used to estimate earthquake-induced sliding displacements (D) of slopes. Most existing models are designed for shallow slope failure using polynomial regression. Based on a large amount of decoupled sliding-block analyses, this paper proposes an artificial neural network (ANN)-aided model to predict D for both shallow and deep slope failures using peak ground acceleration and spectral acceleration at the 2 s period (SA(2 s)). Three sub-models are included for estimating shallow sliding displacement, representing dynamic response of sliding mass, and modifying the displacement for deep failure, respectively. The key features achieved are as follows: (1) the inputted SA is more easily accessible than the mean period (Tm) required by the existing models; (2) impedance ratio (IR) is utilized to account for stiffness conditions of geo-materials underlying slip surfaces; (3) powerful ANN is introduced for the first time as a surrogate of the decoupled analysis. The SA-based model generally yields lower biases and uncertainty than the existing models. Since larger D is produced for smaller IR, the existing models with a single IR value would be unconservative for relatively stiff underlying soils and/or soft overlying soils. Coefficients of the proposed model are provided for practical applications." @default.
- W4387494619 created "2023-10-11" @default.
- W4387494619 creator A5016280448 @default.
- W4387494619 creator A5051810795 @default.
- W4387494619 date "2023-12-01" @default.
- W4387494619 modified "2023-10-12" @default.
- W4387494619 title "Artificial neural network-aided decoupled prediction of earthquake-induced shallow and deep sliding displacements of slopes" @default.
- W4387494619 cites W1970294922 @default.
- W4387494619 cites W2020950111 @default.
- W4387494619 cites W2031950708 @default.
- W4387494619 cites W2051490082 @default.
- W4387494619 cites W2070628887 @default.
- W4387494619 cites W2074648294 @default.
- W4387494619 cites W2077337112 @default.
- W4387494619 cites W2079729400 @default.
- W4387494619 cites W2097596572 @default.
- W4387494619 cites W2135803167 @default.
- W4387494619 cites W2157501616 @default.
- W4387494619 cites W2166095666 @default.
- W4387494619 cites W2289702464 @default.
- W4387494619 cites W2322448435 @default.
- W4387494619 cites W2462319464 @default.
- W4387494619 cites W2742189294 @default.
- W4387494619 cites W2802656666 @default.
- W4387494619 cites W2806029389 @default.
- W4387494619 cites W2883545662 @default.
- W4387494619 cites W2900475741 @default.
- W4387494619 cites W2978642824 @default.
- W4387494619 cites W2979331411 @default.
- W4387494619 cites W2983392297 @default.
- W4387494619 cites W2984639345 @default.
- W4387494619 cites W2991633532 @default.
- W4387494619 cites W3000415642 @default.
- W4387494619 cites W3034752528 @default.
- W4387494619 cites W3036729602 @default.
- W4387494619 cites W3043156965 @default.
- W4387494619 cites W3059002832 @default.
- W4387494619 cites W3075612128 @default.
- W4387494619 cites W3127135273 @default.
- W4387494619 cites W3132291851 @default.
- W4387494619 cites W3166337330 @default.
- W4387494619 cites W3169189908 @default.
- W4387494619 cites W3183269215 @default.
- W4387494619 cites W3194407915 @default.
- W4387494619 cites W3211073980 @default.
- W4387494619 cites W4200134043 @default.
- W4387494619 cites W4205189707 @default.
- W4387494619 cites W4210322513 @default.
- W4387494619 cites W4214935349 @default.
- W4387494619 cites W4223548147 @default.
- W4387494619 cites W4229013564 @default.
- W4387494619 cites W4283585957 @default.
- W4387494619 cites W4304778453 @default.
- W4387494619 cites W4313332305 @default.
- W4387494619 cites W4313640184 @default.
- W4387494619 cites W4318261957 @default.
- W4387494619 cites W4321485651 @default.
- W4387494619 cites W4360966487 @default.
- W4387494619 cites W4361215574 @default.
- W4387494619 cites W4365814461 @default.
- W4387494619 cites W4366254382 @default.
- W4387494619 cites W4367043671 @default.
- W4387494619 cites W4375953142 @default.
- W4387494619 cites W4377232143 @default.
- W4387494619 doi "https://doi.org/10.1016/j.compgeo.2023.105844" @default.
- W4387494619 hasPublicationYear "2023" @default.
- W4387494619 type Work @default.
- W4387494619 citedByCount "0" @default.
- W4387494619 crossrefType "journal-article" @default.
- W4387494619 hasAuthorship W4387494619A5016280448 @default.
- W4387494619 hasAuthorship W4387494619A5051810795 @default.
- W4387494619 hasConcept C107551265 @default.
- W4387494619 hasConcept C117896860 @default.
- W4387494619 hasConcept C121332964 @default.
- W4387494619 hasConcept C127313418 @default.
- W4387494619 hasConcept C127413603 @default.
- W4387494619 hasConcept C146978453 @default.
- W4387494619 hasConcept C154945302 @default.
- W4387494619 hasConcept C15744967 @default.
- W4387494619 hasConcept C187320778 @default.
- W4387494619 hasConcept C195268267 @default.
- W4387494619 hasConcept C2779372316 @default.
- W4387494619 hasConcept C41008148 @default.
- W4387494619 hasConcept C50644808 @default.
- W4387494619 hasConcept C542102704 @default.
- W4387494619 hasConcept C66938386 @default.
- W4387494619 hasConcept C74650414 @default.
- W4387494619 hasConceptScore W4387494619C107551265 @default.
- W4387494619 hasConceptScore W4387494619C117896860 @default.
- W4387494619 hasConceptScore W4387494619C121332964 @default.
- W4387494619 hasConceptScore W4387494619C127313418 @default.
- W4387494619 hasConceptScore W4387494619C127413603 @default.
- W4387494619 hasConceptScore W4387494619C146978453 @default.
- W4387494619 hasConceptScore W4387494619C154945302 @default.
- W4387494619 hasConceptScore W4387494619C15744967 @default.
- W4387494619 hasConceptScore W4387494619C187320778 @default.
- W4387494619 hasConceptScore W4387494619C195268267 @default.
- W4387494619 hasConceptScore W4387494619C2779372316 @default.