Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387494777> ?p ?o ?g. }
- W4387494777 endingPage "8362" @default.
- W4387494777 startingPage "8362" @default.
- W4387494777 abstract "Intrusion detection systems, also known as IDSs, are widely regarded as one of the most essential components of an organization’s network security. This is because IDSs serve as the organization’s first line of defense against several cyberattacks and are accountable for accurately detecting any possible network intrusions. Several implementations of IDSs accomplish the detection of potential threats throughout flow-based network traffic analysis. Traditional IDSs frequently struggle to provide accurate real-time intrusion detection while keeping up with the changing landscape of threat. Innovative methods used to improve IDSs’ performance in network traffic analysis are urgently needed to overcome these drawbacks. In this study, we introduced a model called a deep neural decision forest (DNDF), which allows the enhancement of classification trees with the power of deep networks to learn data representations. We essentially utilized the CICIDS 2017 dataset for network traffic analysis and extended our experiments to evaluate the DNDF model’s performance on two additional datasets: CICIDS 2018 and a custom network traffic dataset. Our findings showed that DNDF, a combination of deep neural networks and decision forests, outperformed reference approaches with a remarkable precision of 99.96% by using the CICIDS 2017 dataset while creating latent representations in deep layers. This success can be attributed to improved feature representation, model optimization, and resilience to noisy and unbalanced input data, emphasizing DNDF’s capabilities in intrusion detection and network security solutions." @default.
- W4387494777 created "2023-10-11" @default.
- W4387494777 creator A5000166233 @default.
- W4387494777 creator A5033923198 @default.
- W4387494777 creator A5042123158 @default.
- W4387494777 creator A5075661449 @default.
- W4387494777 date "2023-10-10" @default.
- W4387494777 modified "2023-10-12" @default.
- W4387494777 title "Deep Neural Decision Forest (DNDF): A Novel Approach for Enhancing Intrusion Detection Systems in Network Traffic Analysis" @default.
- W4387494777 cites W1987552279 @default.
- W4387494777 cites W2736435690 @default.
- W4387494777 cites W2808814577 @default.
- W4387494777 cites W2858629302 @default.
- W4387494777 cites W2900853407 @default.
- W4387494777 cites W2921743340 @default.
- W4387494777 cites W2936503027 @default.
- W4387494777 cites W2990793844 @default.
- W4387494777 cites W3005641848 @default.
- W4387494777 cites W3013077143 @default.
- W4387494777 cites W3034813965 @default.
- W4387494777 cites W3038955483 @default.
- W4387494777 cites W3088665058 @default.
- W4387494777 cites W3094246578 @default.
- W4387494777 cites W3122008541 @default.
- W4387494777 cites W3125261485 @default.
- W4387494777 cites W3127161477 @default.
- W4387494777 cites W3130174800 @default.
- W4387494777 cites W3133665626 @default.
- W4387494777 cites W3135689386 @default.
- W4387494777 cites W3178751310 @default.
- W4387494777 cites W3191493850 @default.
- W4387494777 cites W3203415565 @default.
- W4387494777 cites W3203473930 @default.
- W4387494777 cites W3213644780 @default.
- W4387494777 cites W4200041978 @default.
- W4387494777 cites W4205457273 @default.
- W4387494777 cites W4283789005 @default.
- W4387494777 cites W4283806145 @default.
- W4387494777 cites W4284994113 @default.
- W4387494777 cites W4285326500 @default.
- W4387494777 cites W4285730297 @default.
- W4387494777 cites W4288061885 @default.
- W4387494777 cites W4292838580 @default.
- W4387494777 cites W4293094536 @default.
- W4387494777 cites W4297513523 @default.
- W4387494777 cites W4307521088 @default.
- W4387494777 cites W4308335451 @default.
- W4387494777 cites W4310398036 @default.
- W4387494777 cites W4315642187 @default.
- W4387494777 cites W4315781229 @default.
- W4387494777 cites W4317207812 @default.
- W4387494777 cites W4361009270 @default.
- W4387494777 cites W4377042702 @default.
- W4387494777 doi "https://doi.org/10.3390/s23208362" @default.
- W4387494777 hasPublicationYear "2023" @default.
- W4387494777 type Work @default.
- W4387494777 citedByCount "0" @default.
- W4387494777 crossrefType "journal-article" @default.
- W4387494777 hasAuthorship W4387494777A5000166233 @default.
- W4387494777 hasAuthorship W4387494777A5033923198 @default.
- W4387494777 hasAuthorship W4387494777A5042123158 @default.
- W4387494777 hasAuthorship W4387494777A5075661449 @default.
- W4387494777 hasBestOaLocation W43874947771 @default.
- W4387494777 hasConcept C119857082 @default.
- W4387494777 hasConcept C121332964 @default.
- W4387494777 hasConcept C124101348 @default.
- W4387494777 hasConcept C154945302 @default.
- W4387494777 hasConcept C182590292 @default.
- W4387494777 hasConcept C2779585090 @default.
- W4387494777 hasConcept C35525427 @default.
- W4387494777 hasConcept C38652104 @default.
- W4387494777 hasConcept C41008148 @default.
- W4387494777 hasConcept C50644808 @default.
- W4387494777 hasConcept C84525736 @default.
- W4387494777 hasConcept C97355855 @default.
- W4387494777 hasConceptScore W4387494777C119857082 @default.
- W4387494777 hasConceptScore W4387494777C121332964 @default.
- W4387494777 hasConceptScore W4387494777C124101348 @default.
- W4387494777 hasConceptScore W4387494777C154945302 @default.
- W4387494777 hasConceptScore W4387494777C182590292 @default.
- W4387494777 hasConceptScore W4387494777C2779585090 @default.
- W4387494777 hasConceptScore W4387494777C35525427 @default.
- W4387494777 hasConceptScore W4387494777C38652104 @default.
- W4387494777 hasConceptScore W4387494777C41008148 @default.
- W4387494777 hasConceptScore W4387494777C50644808 @default.
- W4387494777 hasConceptScore W4387494777C84525736 @default.
- W4387494777 hasConceptScore W4387494777C97355855 @default.
- W4387494777 hasIssue "20" @default.
- W4387494777 hasLocation W43874947771 @default.
- W4387494777 hasOpenAccess W4387494777 @default.
- W4387494777 hasPrimaryLocation W43874947771 @default.
- W4387494777 hasRelatedWork W1977863481 @default.
- W4387494777 hasRelatedWork W1992118813 @default.
- W4387494777 hasRelatedWork W2010561419 @default.
- W4387494777 hasRelatedWork W2061466315 @default.
- W4387494777 hasRelatedWork W2115529843 @default.
- W4387494777 hasRelatedWork W2122022187 @default.
- W4387494777 hasRelatedWork W2351448539 @default.