Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387494810> ?p ?o ?g. }
- W4387494810 endingPage "102211" @default.
- W4387494810 startingPage "102211" @default.
- W4387494810 abstract "Gearboxes are the most widely used component to transfer speed and power in many industries, and high precision gearbox fault diagnosis (FD) is pretty crucial for ensuring the safe operation of the machine. However, traditional FD methods often need a great quantity of labeled data, and are prone to noise interference in practical work, resulting in a relatively low diagnosis accuracy. With the intention of overcoming these problems, this paper proposes a semi-supervised FD approach based on feature pre-extraction mechanism and improved generative adversarial network (IGAN). First, the data is preprocessed by the feature pre-extraction mechanism based on wavelet transform. Then, limited labeled samples and a large number of unlabeled samples are sent to the IGAN model. Finally, two typical gearbox fault datasets are utilized to evaluate the feasibility and effectiveness of the proposed approach in limited labeled samples and noise environment. Trial results denote that the proposed approach has better diagnosis accuracy and anti-noise robustness than other approaches." @default.
- W4387494810 created "2023-10-11" @default.
- W4387494810 creator A5027212691 @default.
- W4387494810 creator A5031315906 @default.
- W4387494810 creator A5078613260 @default.
- W4387494810 creator A5083824109 @default.
- W4387494810 creator A5088134544 @default.
- W4387494810 date "2023-10-01" @default.
- W4387494810 modified "2023-10-12" @default.
- W4387494810 title "Semi-supervised fault diagnosis of gearbox based on feature pre-extraction mechanism and improved generative adversarial networks under limited labeled samples and noise environment" @default.
- W4387494810 cites W2886794804 @default.
- W4387494810 cites W2887782657 @default.
- W4387494810 cites W2923456422 @default.
- W4387494810 cites W3026117520 @default.
- W4387494810 cites W3041734766 @default.
- W4387494810 cites W3046248607 @default.
- W4387494810 cites W3104615765 @default.
- W4387494810 cites W3107499124 @default.
- W4387494810 cites W3117515147 @default.
- W4387494810 cites W3153655623 @default.
- W4387494810 cites W3185234777 @default.
- W4387494810 cites W3197710685 @default.
- W4387494810 cites W3197756973 @default.
- W4387494810 cites W3197829552 @default.
- W4387494810 cites W3198038800 @default.
- W4387494810 cites W3213088652 @default.
- W4387494810 cites W4200473862 @default.
- W4387494810 cites W4205637505 @default.
- W4387494810 cites W4283067523 @default.
- W4387494810 cites W4283719576 @default.
- W4387494810 cites W4289950778 @default.
- W4387494810 cites W4293180384 @default.
- W4387494810 cites W4295956768 @default.
- W4387494810 cites W4296219852 @default.
- W4387494810 cites W4296225832 @default.
- W4387494810 cites W4296916705 @default.
- W4387494810 cites W4306291530 @default.
- W4387494810 cites W4306954497 @default.
- W4387494810 cites W4308311210 @default.
- W4387494810 cites W4310875092 @default.
- W4387494810 cites W4311257611 @default.
- W4387494810 cites W4313611903 @default.
- W4387494810 cites W4315866203 @default.
- W4387494810 cites W4318570597 @default.
- W4387494810 cites W4318825746 @default.
- W4387494810 cites W4319594316 @default.
- W4387494810 cites W4320921289 @default.
- W4387494810 cites W4321793275 @default.
- W4387494810 cites W4323351149 @default.
- W4387494810 cites W4323363489 @default.
- W4387494810 cites W4324394773 @default.
- W4387494810 cites W4380740342 @default.
- W4387494810 cites W4382197310 @default.
- W4387494810 doi "https://doi.org/10.1016/j.aei.2023.102211" @default.
- W4387494810 hasPublicationYear "2023" @default.
- W4387494810 type Work @default.
- W4387494810 citedByCount "0" @default.
- W4387494810 crossrefType "journal-article" @default.
- W4387494810 hasAuthorship W4387494810A5027212691 @default.
- W4387494810 hasAuthorship W4387494810A5031315906 @default.
- W4387494810 hasAuthorship W4387494810A5078613260 @default.
- W4387494810 hasAuthorship W4387494810A5083824109 @default.
- W4387494810 hasAuthorship W4387494810A5088134544 @default.
- W4387494810 hasConcept C104317684 @default.
- W4387494810 hasConcept C115961682 @default.
- W4387494810 hasConcept C119857082 @default.
- W4387494810 hasConcept C124101348 @default.
- W4387494810 hasConcept C127313418 @default.
- W4387494810 hasConcept C153180895 @default.
- W4387494810 hasConcept C154945302 @default.
- W4387494810 hasConcept C165205528 @default.
- W4387494810 hasConcept C175551986 @default.
- W4387494810 hasConcept C185592680 @default.
- W4387494810 hasConcept C41008148 @default.
- W4387494810 hasConcept C47432892 @default.
- W4387494810 hasConcept C52622490 @default.
- W4387494810 hasConcept C55493867 @default.
- W4387494810 hasConcept C63479239 @default.
- W4387494810 hasConcept C99498987 @default.
- W4387494810 hasConceptScore W4387494810C104317684 @default.
- W4387494810 hasConceptScore W4387494810C115961682 @default.
- W4387494810 hasConceptScore W4387494810C119857082 @default.
- W4387494810 hasConceptScore W4387494810C124101348 @default.
- W4387494810 hasConceptScore W4387494810C127313418 @default.
- W4387494810 hasConceptScore W4387494810C153180895 @default.
- W4387494810 hasConceptScore W4387494810C154945302 @default.
- W4387494810 hasConceptScore W4387494810C165205528 @default.
- W4387494810 hasConceptScore W4387494810C175551986 @default.
- W4387494810 hasConceptScore W4387494810C185592680 @default.
- W4387494810 hasConceptScore W4387494810C41008148 @default.
- W4387494810 hasConceptScore W4387494810C47432892 @default.
- W4387494810 hasConceptScore W4387494810C52622490 @default.
- W4387494810 hasConceptScore W4387494810C55493867 @default.
- W4387494810 hasConceptScore W4387494810C63479239 @default.
- W4387494810 hasConceptScore W4387494810C99498987 @default.
- W4387494810 hasLocation W43874948101 @default.
- W4387494810 hasOpenAccess W4387494810 @default.
- W4387494810 hasPrimaryLocation W43874948101 @default.