Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387495384> ?p ?o ?g. }
- W4387495384 endingPage "139233" @default.
- W4387495384 startingPage "139233" @default.
- W4387495384 abstract "Accurate air pollution forecasting may provide valuable information for urban planning to maintain environmental sustainability and reduce mortality risk due to health problems. The city with higher industrial activities, traffic congestion, population density, and energy consumption is most likely to produce higher pollution than the other cities. Therefore, this study uses hybrid deep learning models to forecast air pollution based on the concentration of particulate matter with diameter size of less than 2.5μm (PM2.5) for two air quality monitoring stations in Kuala Lumpur, Malaysia. The proposed models predict the hourly air pollutant concentration based on 4-hour historical input based on six air pollutant data, meteorology parameters, and PM2.5 concentration data from the neighboring air quality monitoring stations. Long short-term memory based on metaheuristic algorithms, namely particle swarm optimization and sparrow search algorithm (PSO-LSTM and SSA-LSTM), are first developed and applied to determine the significance input combination to the changes of PM2.5 concentration at respective target stations. Then, the input configuration that gives the best forecasting accuracy was selected for subsequent experiments using enhanced approaches based on ensemble empirical mode decomposition (EEMD-PSO-LSTM and EEMD-SSA-LSTM). Subsequently, this study also analyzed the contributions of the neighboring PM2.5 dataset to the fluctuation of PM2.5 concentration at target stations. It is found that EEMD-SSA-LSTM model of M5 improves other models in Batu Muda and Cheras by 2.65% and 20.00% for RMSE and 9.31% and 25.30% for MAE, respectively. The results indicate that the proposed model yields the highest forecasting accuracy compared to the other models, and additional information on neighboring PM2.5 significantly improves the forecasting accuracy at both target stations. Besides that, comparing the performance of the two optimization approaches, SSA provides better performance compared to PSO in optimizing LSTM hyperparameters to forecast PM2.5 concentration." @default.
- W4387495384 created "2023-10-11" @default.
- W4387495384 creator A5002967897 @default.
- W4387495384 creator A5010789167 @default.
- W4387495384 creator A5037718934 @default.
- W4387495384 creator A5068757049 @default.
- W4387495384 creator A5072368355 @default.
- W4387495384 date "2023-11-01" @default.
- W4387495384 modified "2023-10-16" @default.
- W4387495384 title "Forecasting of fine particulate matter based on LSTM and optimization algorithm" @default.
- W4387495384 cites W1999466901 @default.
- W4387495384 cites W2007221293 @default.
- W4387495384 cites W2064675550 @default.
- W4387495384 cites W2109364787 @default.
- W4387495384 cites W2122470043 @default.
- W4387495384 cites W2771794792 @default.
- W4387495384 cites W2773000467 @default.
- W4387495384 cites W2782053432 @default.
- W4387495384 cites W2888345420 @default.
- W4387495384 cites W2911355461 @default.
- W4387495384 cites W2912189257 @default.
- W4387495384 cites W2938902291 @default.
- W4387495384 cites W2947942372 @default.
- W4387495384 cites W2951123913 @default.
- W4387495384 cites W2977179014 @default.
- W4387495384 cites W2982277720 @default.
- W4387495384 cites W2989528833 @default.
- W4387495384 cites W2998553334 @default.
- W4387495384 cites W2999205998 @default.
- W4387495384 cites W3010886064 @default.
- W4387495384 cites W3012931081 @default.
- W4387495384 cites W3015723457 @default.
- W4387495384 cites W3022712462 @default.
- W4387495384 cites W3025026054 @default.
- W4387495384 cites W3027059498 @default.
- W4387495384 cites W3029326408 @default.
- W4387495384 cites W3035717876 @default.
- W4387495384 cites W3043720145 @default.
- W4387495384 cites W3045004532 @default.
- W4387495384 cites W3083243855 @default.
- W4387495384 cites W3083957475 @default.
- W4387495384 cites W3088021634 @default.
- W4387495384 cites W3088914914 @default.
- W4387495384 cites W3119665391 @default.
- W4387495384 cites W3127469572 @default.
- W4387495384 cites W3137746357 @default.
- W4387495384 cites W3143094472 @default.
- W4387495384 cites W3156729695 @default.
- W4387495384 cites W3170301428 @default.
- W4387495384 cites W3184145790 @default.
- W4387495384 cites W3215971971 @default.
- W4387495384 cites W4210382351 @default.
- W4387495384 cites W4221129050 @default.
- W4387495384 cites W4224222479 @default.
- W4387495384 cites W4224273000 @default.
- W4387495384 cites W4224281447 @default.
- W4387495384 cites W4224314544 @default.
- W4387495384 cites W4224947654 @default.
- W4387495384 cites W4225606092 @default.
- W4387495384 cites W4285098918 @default.
- W4387495384 cites W4285263492 @default.
- W4387495384 cites W4293329630 @default.
- W4387495384 cites W4293410823 @default.
- W4387495384 cites W4293660267 @default.
- W4387495384 cites W4294771593 @default.
- W4387495384 cites W4295006236 @default.
- W4387495384 cites W4295094598 @default.
- W4387495384 cites W4297988441 @default.
- W4387495384 cites W4298000135 @default.
- W4387495384 cites W4298003589 @default.
- W4387495384 cites W4306882681 @default.
- W4387495384 cites W4307278494 @default.
- W4387495384 cites W4307816161 @default.
- W4387495384 cites W4312196290 @default.
- W4387495384 cites W4361269607 @default.
- W4387495384 cites W4377695131 @default.
- W4387495384 cites W4385933252 @default.
- W4387495384 doi "https://doi.org/10.1016/j.jclepro.2023.139233" @default.
- W4387495384 hasPublicationYear "2023" @default.
- W4387495384 type Work @default.
- W4387495384 citedByCount "0" @default.
- W4387495384 crossrefType "journal-article" @default.
- W4387495384 hasAuthorship W4387495384A5002967897 @default.
- W4387495384 hasAuthorship W4387495384A5010789167 @default.
- W4387495384 hasAuthorship W4387495384A5037718934 @default.
- W4387495384 hasAuthorship W4387495384A5068757049 @default.
- W4387495384 hasAuthorship W4387495384A5072368355 @default.
- W4387495384 hasConcept C105795698 @default.
- W4387495384 hasConcept C11413529 @default.
- W4387495384 hasConcept C126314574 @default.
- W4387495384 hasConcept C139945424 @default.
- W4387495384 hasConcept C153294291 @default.
- W4387495384 hasConcept C178790620 @default.
- W4387495384 hasConcept C185592680 @default.
- W4387495384 hasConcept C186370098 @default.
- W4387495384 hasConcept C18903297 @default.
- W4387495384 hasConcept C205649164 @default.
- W4387495384 hasConcept C24245907 @default.