Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387495995> ?p ?o ?g. }
- W4387495995 abstract "Large-scale datasets have played a crucial role in the advancement of computer vision. However, they often suffer from problems such as class imbalance, noisy labels, dataset bias, or high resource costs, which can inhibit model performance and reduce trustworthiness. With the advocacy of data-centric research, various data-centric solutions have been proposed to solve the dataset problems mentioned above. They improve the quality of datasets by re-organizing them, which we call dataset refinement. In this survey, we provide a comprehensive and structured overview of recent advances in dataset refinement for problematic computer vision datasets 1 . Firstly, we summarize and analyze the various problems encountered in large-scale computer vision datasets. Then, we classify the dataset refinement algorithms into three categories based on the refinement process: data sampling, data subset selection, and active learning. In addition, we organize these dataset refinement methods according to the addressed data problems and provide a systematic comparative description. We point out that these three types of dataset refinement have distinct advantages and disadvantages for dataset problems, which informs the choice of the data-centric method appropriate to a particular research objective. Finally, we summarize the current literature and propose potential future research topics." @default.
- W4387495995 created "2023-10-11" @default.
- W4387495995 creator A5043560098 @default.
- W4387495995 creator A5049131970 @default.
- W4387495995 creator A5052267876 @default.
- W4387495995 creator A5058795406 @default.
- W4387495995 date "2023-10-10" @default.
- W4387495995 modified "2023-10-12" @default.
- W4387495995 title "A Survey of Dataset Refinement for Problems in Computer Vision Datasets" @default.
- W4387495995 cites W1514928307 @default.
- W4387495995 cites W1978633512 @default.
- W4387495995 cites W1978906111 @default.
- W4387495995 cites W1992129502 @default.
- W4387495995 cites W1994550352 @default.
- W4387495995 cites W2011762057 @default.
- W4387495995 cites W2031342017 @default.
- W4387495995 cites W2047885427 @default.
- W4387495995 cites W2080021732 @default.
- W4387495995 cites W2108598243 @default.
- W4387495995 cites W2112796928 @default.
- W4387495995 cites W2118978333 @default.
- W4387495995 cites W2124244761 @default.
- W4387495995 cites W2139573966 @default.
- W4387495995 cites W2148143831 @default.
- W4387495995 cites W2155319834 @default.
- W4387495995 cites W2166761907 @default.
- W4387495995 cites W2167828456 @default.
- W4387495995 cites W2194775991 @default.
- W4387495995 cites W2524029660 @default.
- W4387495995 cites W2566079294 @default.
- W4387495995 cites W2586600089 @default.
- W4387495995 cites W2616630373 @default.
- W4387495995 cites W2781292787 @default.
- W4387495995 cites W2789833952 @default.
- W4387495995 cites W2797977484 @default.
- W4387495995 cites W2798820905 @default.
- W4387495995 cites W2883386984 @default.
- W4387495995 cites W2887842788 @default.
- W4387495995 cites W2895243423 @default.
- W4387495995 cites W2954996726 @default.
- W4387495995 cites W2962747323 @default.
- W4387495995 cites W2962827663 @default.
- W4387495995 cites W2962843773 @default.
- W4387495995 cites W2963070594 @default.
- W4387495995 cites W2963070905 @default.
- W4387495995 cites W2963156201 @default.
- W4387495995 cites W2963351448 @default.
- W4387495995 cites W2963491601 @default.
- W4387495995 cites W2963516811 @default.
- W4387495995 cites W2963696295 @default.
- W4387495995 cites W2963809228 @default.
- W4387495995 cites W2963877232 @default.
- W4387495995 cites W2964048876 @default.
- W4387495995 cites W2964099985 @default.
- W4387495995 cites W2965018299 @default.
- W4387495995 cites W2971644666 @default.
- W4387495995 cites W2982358316 @default.
- W4387495995 cites W2988966271 @default.
- W4387495995 cites W2996060033 @default.
- W4387495995 cites W2997199946 @default.
- W4387495995 cites W2997599645 @default.
- W4387495995 cites W3010512657 @default.
- W4387495995 cites W3016970897 @default.
- W4387495995 cites W3035303987 @default.
- W4387495995 cites W3042609801 @default.
- W4387495995 cites W3093401039 @default.
- W4387495995 cites W3103649165 @default.
- W4387495995 cites W3108105109 @default.
- W4387495995 cites W3109044914 @default.
- W4387495995 cites W3113682753 @default.
- W4387495995 cites W3156669901 @default.
- W4387495995 cites W3164803610 @default.
- W4387495995 cites W3166596953 @default.
- W4387495995 cites W3169785106 @default.
- W4387495995 cites W3175157109 @default.
- W4387495995 cites W3176695237 @default.
- W4387495995 cites W3185094524 @default.
- W4387495995 cites W3199126386 @default.
- W4387495995 cites W3202232857 @default.
- W4387495995 cites W3203395150 @default.
- W4387495995 cites W3203770998 @default.
- W4387495995 cites W3204785235 @default.
- W4387495995 cites W3214897310 @default.
- W4387495995 cites W4214951466 @default.
- W4387495995 cites W4224222011 @default.
- W4387495995 cites W4224237294 @default.
- W4387495995 cites W4224952733 @default.
- W4387495995 cites W4225418897 @default.
- W4387495995 cites W4283792351 @default.
- W4387495995 cites W4283795007 @default.
- W4387495995 cites W4292121845 @default.
- W4387495995 cites W4312344855 @default.
- W4387495995 cites W4312382184 @default.
- W4387495995 cites W4312407813 @default.
- W4387495995 cites W4312601326 @default.
- W4387495995 cites W4312677475 @default.
- W4387495995 doi "https://doi.org/10.1145/3627157" @default.
- W4387495995 hasPublicationYear "2023" @default.
- W4387495995 type Work @default.
- W4387495995 citedByCount "0" @default.