Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387496553> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387496553 abstract "Background COVID-19 has strained healthcare resources, necessitating efficient prognostication to triage patients effectively. This study quantified COVID-19 risk factors and predicted COVID-19 intensive care unit (ICU) mortality in South Africa based on machine learning algorithms. Methods Data for this study were obtained from 392 COVID-19 ICU patients enrolled between 26 March 2020 and 10 February 2021. We used an artificial neural network (ANN) and random forest (RF) to predict mortality among ICU patients and a semi-parametric logistic regression with nine covariates, including a grouping variable based on K -means clustering. Further evaluation of the algorithms was performed using sensitivity, accuracy, specificity, and Cohen's K statistics. Results From the semi-parametric logistic regression and ANN variable importance, age, gender, cluster, presence of severe symptoms, being on the ventilator, and comorbidities of asthma significantly contributed to ICU death. In particular, the odds of mortality were six times higher among asthmatic patients than non-asthmatic patients. In univariable and multivariate regression, advanced age, PF1 and 2, FiO 2 , severe symptoms, asthma, oxygen saturation, and cluster 4 were strongly predictive of mortality. The RF model revealed that intubation status, age, cluster, diabetes, and hypertension were the top five significant predictors of mortality. The ANN performed well with an accuracy of 71%, a precision of 83%, an F1 score of 100%, Matthew's correlation coefficient (MCC) score of 100%, and a recall of 88%. In addition, Cohen's k -value of 0.75 verified the most extreme discriminative power of the ANN. In comparison, the RF model provided a 76% recall, an 87% precision, and a 65% MCC. Conclusion Based on the findings, we can conclude that both ANN and RF can predict COVID-19 mortality in the ICU with accuracy. The proposed models accurately predict the prognosis of COVID-19 patients after diagnosis. The models can be used to prioritize COVID-19 patients with a high mortality risk in resource-constrained ICUs." @default.
- W4387496553 created "2023-10-11" @default.
- W4387496553 creator A5036391115 @default.
- W4387496553 creator A5039163639 @default.
- W4387496553 creator A5073386161 @default.
- W4387496553 creator A5084610821 @default.
- W4387496553 creator A5085302925 @default.
- W4387496553 creator A5093035782 @default.
- W4387496553 creator A5093035783 @default.
- W4387496553 date "2023-10-10" @default.
- W4387496553 modified "2023-10-18" @default.
- W4387496553 title "Machine learning algorithms for predicting determinants of COVID-19 mortality in South Africa" @default.
- W4387496553 cites W1831050183 @default.
- W4387496553 cites W2924571696 @default.
- W4387496553 cites W3021783427 @default.
- W4387496553 cites W3046375353 @default.
- W4387496553 cites W3082501133 @default.
- W4387496553 cites W3097189258 @default.
- W4387496553 cites W3133705671 @default.
- W4387496553 cites W3145918802 @default.
- W4387496553 cites W3159438051 @default.
- W4387496553 cites W3162199380 @default.
- W4387496553 cites W3162810948 @default.
- W4387496553 cites W3165977014 @default.
- W4387496553 cites W3176943905 @default.
- W4387496553 cites W3197782790 @default.
- W4387496553 cites W3199334704 @default.
- W4387496553 cites W3199397800 @default.
- W4387496553 cites W3207434859 @default.
- W4387496553 cites W3211083157 @default.
- W4387496553 cites W4200044023 @default.
- W4387496553 cites W4205339139 @default.
- W4387496553 cites W4224250244 @default.
- W4387496553 cites W4226332129 @default.
- W4387496553 cites W4283025351 @default.
- W4387496553 cites W4283772489 @default.
- W4387496553 cites W4287527199 @default.
- W4387496553 cites W4307843768 @default.
- W4387496553 cites W4313316572 @default.
- W4387496553 cites W4362581222 @default.
- W4387496553 doi "https://doi.org/10.3389/frai.2023.1171256" @default.
- W4387496553 hasPublicationYear "2023" @default.
- W4387496553 type Work @default.
- W4387496553 citedByCount "0" @default.
- W4387496553 crossrefType "journal-article" @default.
- W4387496553 hasAuthorship W4387496553A5036391115 @default.
- W4387496553 hasAuthorship W4387496553A5039163639 @default.
- W4387496553 hasAuthorship W4387496553A5073386161 @default.
- W4387496553 hasAuthorship W4387496553A5084610821 @default.
- W4387496553 hasAuthorship W4387496553A5085302925 @default.
- W4387496553 hasAuthorship W4387496553A5093035782 @default.
- W4387496553 hasAuthorship W4387496553A5093035783 @default.
- W4387496553 hasBestOaLocation W43874965531 @default.
- W4387496553 hasConcept C11413529 @default.
- W4387496553 hasConcept C119857082 @default.
- W4387496553 hasConcept C126322002 @default.
- W4387496553 hasConcept C151956035 @default.
- W4387496553 hasConcept C169258074 @default.
- W4387496553 hasConcept C194828623 @default.
- W4387496553 hasConcept C2777080012 @default.
- W4387496553 hasConcept C2777120189 @default.
- W4387496553 hasConcept C41008148 @default.
- W4387496553 hasConcept C71924100 @default.
- W4387496553 hasConceptScore W4387496553C11413529 @default.
- W4387496553 hasConceptScore W4387496553C119857082 @default.
- W4387496553 hasConceptScore W4387496553C126322002 @default.
- W4387496553 hasConceptScore W4387496553C151956035 @default.
- W4387496553 hasConceptScore W4387496553C169258074 @default.
- W4387496553 hasConceptScore W4387496553C194828623 @default.
- W4387496553 hasConceptScore W4387496553C2777080012 @default.
- W4387496553 hasConceptScore W4387496553C2777120189 @default.
- W4387496553 hasConceptScore W4387496553C41008148 @default.
- W4387496553 hasConceptScore W4387496553C71924100 @default.
- W4387496553 hasLocation W43874965531 @default.
- W4387496553 hasOpenAccess W4387496553 @default.
- W4387496553 hasPrimaryLocation W43874965531 @default.
- W4387496553 hasRelatedWork W125325933 @default.
- W4387496553 hasRelatedWork W2033023095 @default.
- W4387496553 hasRelatedWork W2144451503 @default.
- W4387496553 hasRelatedWork W2147580721 @default.
- W4387496553 hasRelatedWork W3015660457 @default.
- W4387496553 hasRelatedWork W4308573183 @default.
- W4387496553 hasRelatedWork W4366967560 @default.
- W4387496553 hasRelatedWork W4367335937 @default.
- W4387496553 hasRelatedWork W4367335965 @default.
- W4387496553 hasRelatedWork W4385574838 @default.
- W4387496553 hasVolume "6" @default.
- W4387496553 isParatext "false" @default.
- W4387496553 isRetracted "false" @default.
- W4387496553 workType "article" @default.