Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387496611> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387496611 endingPage "S200" @default.
- W4387496611 startingPage "S200" @default.
- W4387496611 abstract "Population stratification occurs when sub-populations exhibit distinct allele frequencies due to geographic separation and limited genetic exchange. However, this poses challenges in genetic analysis as allelic differences can confound the detection of causal links between genetic variants and phenotypic traits. To address this, Principal Component Analysis (PCA) is commonly used to infer population stratification and adjust for its impact in genome-wide association studies (GWAS). Nevertheless, the performance of PCA decreases when analyzing rare variants, resulting in their exclusion from analysis. Paradoxically, rare variants hold valuable information about hidden population substructures not captured by reference panels. This highlights the importance of considering rare variants in accurately correcting spurious associations induced by these variants. For our correction we are using autoencoders, a type of neural network, which consist of an encoder that compresses input data into a lower dimensionnality representation and a decoder that reconstructs the original data. We then cluster the single nucleotide polymorphisms (SNPs) based on similarity. A k-means approach is used to identify SNP clusters, potentially capturing linkage disequilibrium (LD) implicitly. These clusters may contain important information about unlabeled population substructures that traditional methods like PCA might miss, impacting population stratification bias. Empirical evidence, including a visualization of allele frequency differences per ancestry, supports the notion that lower-dimensional representations of similar SNPs reveal hidden population structure not evident through conventional analysis. The SNP clusters are then used to create an allele frequency landscape which can subsequently be used as correction for population stratification in GWA studies. Through extensive simulations, we consistently observed that our model outperformed classical methods in effectively handling rare variants. Notably, our model demonstrated comparable performance to classical methods when dealing with very common variants. These findings highlight the superiority of our model in accurately capturing and correcting for population stratification associated with rare variants. The simulations provided valuable insights into the robustness and effectiveness of our model, supporting its potential as a reliable tool for population stratification correction in genetic studies. If the basic quality control steps involve filtering out rare variants, classical correction methods like PCA may be more efficient due to the substantial computational requirements of our model. Nevertheless, our results highlight the potential and value of our model in overcoming the limitations of classical methods when dealing with rare variants, leading to more accurate genetic structure representation and reliable identification of phenotype-associated genetic variants. Further research should focus on optimizing the computational efficiency of our model and identifying specific scenarios where it provides the greatest benefits. Overall, our study contributes to advancing population stratification analysis and underscores the potential of our model in improving the accuracy of genetic analyses involving rare variants." @default.
- W4387496611 created "2023-10-11" @default.
- W4387496611 creator A5015444349 @default.
- W4387496611 creator A5052016436 @default.
- W4387496611 creator A5060009226 @default.
- W4387496611 date "2023-10-01" @default.
- W4387496611 modified "2023-10-12" @default.
- W4387496611 title "T72. AUTOENCODER BASED CORRECTION OF POPULATION STRATIFICATION PER INDIVIDUAL SNP'S" @default.
- W4387496611 doi "https://doi.org/10.1016/j.euroneuro.2023.08.356" @default.
- W4387496611 hasPublicationYear "2023" @default.
- W4387496611 type Work @default.
- W4387496611 citedByCount "0" @default.
- W4387496611 crossrefType "journal-article" @default.
- W4387496611 hasAuthorship W4387496611A5015444349 @default.
- W4387496611 hasAuthorship W4387496611A5052016436 @default.
- W4387496611 hasAuthorship W4387496611A5060009226 @default.
- W4387496611 hasConcept C104317684 @default.
- W4387496611 hasConcept C106208931 @default.
- W4387496611 hasConcept C119857082 @default.
- W4387496611 hasConcept C135763542 @default.
- W4387496611 hasConcept C144024400 @default.
- W4387496611 hasConcept C149923435 @default.
- W4387496611 hasConcept C153209595 @default.
- W4387496611 hasConcept C154945302 @default.
- W4387496611 hasConcept C157410074 @default.
- W4387496611 hasConcept C166976648 @default.
- W4387496611 hasConcept C180754005 @default.
- W4387496611 hasConcept C186413461 @default.
- W4387496611 hasConcept C27438332 @default.
- W4387496611 hasConcept C2908647359 @default.
- W4387496611 hasConcept C35605836 @default.
- W4387496611 hasConcept C37463918 @default.
- W4387496611 hasConcept C41008148 @default.
- W4387496611 hasConcept C54355233 @default.
- W4387496611 hasConcept C70721500 @default.
- W4387496611 hasConcept C78458016 @default.
- W4387496611 hasConcept C86803240 @default.
- W4387496611 hasConcept C97256817 @default.
- W4387496611 hasConceptScore W4387496611C104317684 @default.
- W4387496611 hasConceptScore W4387496611C106208931 @default.
- W4387496611 hasConceptScore W4387496611C119857082 @default.
- W4387496611 hasConceptScore W4387496611C135763542 @default.
- W4387496611 hasConceptScore W4387496611C144024400 @default.
- W4387496611 hasConceptScore W4387496611C149923435 @default.
- W4387496611 hasConceptScore W4387496611C153209595 @default.
- W4387496611 hasConceptScore W4387496611C154945302 @default.
- W4387496611 hasConceptScore W4387496611C157410074 @default.
- W4387496611 hasConceptScore W4387496611C166976648 @default.
- W4387496611 hasConceptScore W4387496611C180754005 @default.
- W4387496611 hasConceptScore W4387496611C186413461 @default.
- W4387496611 hasConceptScore W4387496611C27438332 @default.
- W4387496611 hasConceptScore W4387496611C2908647359 @default.
- W4387496611 hasConceptScore W4387496611C35605836 @default.
- W4387496611 hasConceptScore W4387496611C37463918 @default.
- W4387496611 hasConceptScore W4387496611C41008148 @default.
- W4387496611 hasConceptScore W4387496611C54355233 @default.
- W4387496611 hasConceptScore W4387496611C70721500 @default.
- W4387496611 hasConceptScore W4387496611C78458016 @default.
- W4387496611 hasConceptScore W4387496611C86803240 @default.
- W4387496611 hasConceptScore W4387496611C97256817 @default.
- W4387496611 hasLocation W43874966111 @default.
- W4387496611 hasOpenAccess W4387496611 @default.
- W4387496611 hasPrimaryLocation W43874966111 @default.
- W4387496611 hasRelatedWork W1751411280 @default.
- W4387496611 hasRelatedWork W1981288428 @default.
- W4387496611 hasRelatedWork W1988134349 @default.
- W4387496611 hasRelatedWork W1996847027 @default.
- W4387496611 hasRelatedWork W2008588426 @default.
- W4387496611 hasRelatedWork W2024328933 @default.
- W4387496611 hasRelatedWork W2141153464 @default.
- W4387496611 hasRelatedWork W2481014730 @default.
- W4387496611 hasRelatedWork W2963604840 @default.
- W4387496611 hasRelatedWork W4214715731 @default.
- W4387496611 hasVolume "75" @default.
- W4387496611 isParatext "false" @default.
- W4387496611 isRetracted "false" @default.
- W4387496611 workType "article" @default.