Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387496665> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4387496665 endingPage "S205" @default.
- W4387496665 startingPage "S205" @default.
- W4387496665 abstract "Many drugs show promise in animal models but fail in human clinical trials due to lack of efficacy. Retrospective studies have found that proteins are more likely to make successful drug targets if they have been linked to the relevant disease by human genetic studies. We have published genome-wide association studies (GWASes) for Parkinson's disease (PD) and schizophrenia (SCZ), testing for an association between disease status and millions of single nucleotide polymorphisms (SNPs). Although >300 genomic regions were identified for these diseases, the causal genes in many of these regions remain unknown. We propose using state-of-the-art statistical genetics tools to identify these causal genes and explore their potential as drug targets. Most GWASes attempt to define the smallest possible set of SNPs that is likely to contain the causal variant (the credible set) in each identified region. However, they typically do not take advantage of information regarding the function of these SNPs. PolyFun, a well-established machine learning method, will be used to identify the features of SNPs (187 tested) that are associated with PD and SCZ risk (e.g., degree of evolutionary conservation). This information will then be used as a Bayesian prior to generate improved credible sets and map putative causal SNPs to putative causal genes (e.g., SNPs located in promoters). In addition to this SNP-centric approach, a similar gene-centric approach will be employed. PoPS, a recently-published machine learning method, will be used to identify the features of genes (>57,000 tested) that are associated with PD and SCZ risk (e.g., expression in brain). The genes that are most likely to affect disease risk will be identified based on their features. By combining these SNP-centric and gene-centric methods we will pinpoint causal genes in as-of-yet unresolved GWAS regions. As a positive control, we will present PolyFun and PoPS results for PD and SCZ loci that have previously been successfully fine-mapped. In addition, we will present results for loci that have not been successfully fine-mapped, focusing on loci where a single putative causal gene is nominated with high confidence. Here we propose using cutting edge computational techniques to identify causal variants and genes in GWAS loci for PD and SCZ. Our findings may help identify novel drug targets for these diseases and may lead to the development of new pharmacological approaches." @default.
- W4387496665 created "2023-10-11" @default.
- W4387496665 creator A5043145762 @default.
- W4387496665 creator A5061729724 @default.
- W4387496665 date "2023-10-01" @default.
- W4387496665 modified "2023-10-12" @default.
- W4387496665 title "T80. IDENTIFICATION OF CAUSAL GENES AND PUTATIVE DRUG TARGETS FOR PARKINSON'S DISEASE AND SCHIZOPHRENIA USING STATISTICAL GENETICS TECHNIQUES" @default.
- W4387496665 doi "https://doi.org/10.1016/j.euroneuro.2023.08.364" @default.
- W4387496665 hasPublicationYear "2023" @default.
- W4387496665 type Work @default.
- W4387496665 citedByCount "0" @default.
- W4387496665 crossrefType "journal-article" @default.
- W4387496665 hasAuthorship W4387496665A5043145762 @default.
- W4387496665 hasAuthorship W4387496665A5061729724 @default.
- W4387496665 hasConcept C104317684 @default.
- W4387496665 hasConcept C106208931 @default.
- W4387496665 hasConcept C116834253 @default.
- W4387496665 hasConcept C118552586 @default.
- W4387496665 hasConcept C135763542 @default.
- W4387496665 hasConcept C139275648 @default.
- W4387496665 hasConcept C142724271 @default.
- W4387496665 hasConcept C153209595 @default.
- W4387496665 hasConcept C186413461 @default.
- W4387496665 hasConcept C2776412080 @default.
- W4387496665 hasConcept C2779134260 @default.
- W4387496665 hasConcept C54355233 @default.
- W4387496665 hasConcept C59822182 @default.
- W4387496665 hasConcept C60644358 @default.
- W4387496665 hasConcept C70721500 @default.
- W4387496665 hasConcept C71924100 @default.
- W4387496665 hasConcept C86803240 @default.
- W4387496665 hasConceptScore W4387496665C104317684 @default.
- W4387496665 hasConceptScore W4387496665C106208931 @default.
- W4387496665 hasConceptScore W4387496665C116834253 @default.
- W4387496665 hasConceptScore W4387496665C118552586 @default.
- W4387496665 hasConceptScore W4387496665C135763542 @default.
- W4387496665 hasConceptScore W4387496665C139275648 @default.
- W4387496665 hasConceptScore W4387496665C142724271 @default.
- W4387496665 hasConceptScore W4387496665C153209595 @default.
- W4387496665 hasConceptScore W4387496665C186413461 @default.
- W4387496665 hasConceptScore W4387496665C2776412080 @default.
- W4387496665 hasConceptScore W4387496665C2779134260 @default.
- W4387496665 hasConceptScore W4387496665C54355233 @default.
- W4387496665 hasConceptScore W4387496665C59822182 @default.
- W4387496665 hasConceptScore W4387496665C60644358 @default.
- W4387496665 hasConceptScore W4387496665C70721500 @default.
- W4387496665 hasConceptScore W4387496665C71924100 @default.
- W4387496665 hasConceptScore W4387496665C86803240 @default.
- W4387496665 hasLocation W43874966651 @default.
- W4387496665 hasOpenAccess W4387496665 @default.
- W4387496665 hasPrimaryLocation W43874966651 @default.
- W4387496665 hasRelatedWork W1511048503 @default.
- W4387496665 hasRelatedWork W1997352593 @default.
- W4387496665 hasRelatedWork W2143489661 @default.
- W4387496665 hasRelatedWork W2164855536 @default.
- W4387496665 hasRelatedWork W2571299013 @default.
- W4387496665 hasRelatedWork W3016573916 @default.
- W4387496665 hasRelatedWork W3024317680 @default.
- W4387496665 hasRelatedWork W3157359833 @default.
- W4387496665 hasRelatedWork W3206555169 @default.
- W4387496665 hasRelatedWork W4281711902 @default.
- W4387496665 hasVolume "75" @default.
- W4387496665 isParatext "false" @default.
- W4387496665 isRetracted "false" @default.
- W4387496665 workType "article" @default.