Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387496772> ?p ?o ?g. }
- W4387496772 endingPage "43" @default.
- W4387496772 startingPage "31" @default.
- W4387496772 abstract "Wind is a renewable power source that is created by the uneven heating in the atmosphere and the force of Coriolis acceleration. It is a sustainable way to produce energy from renewable sources. However, there are several challenges to generating energy from wind power plants. This study looked at using artificial intelligence algorithms to predict short-term wind power generation. A goal was to create a robust system that could accurately predict wind power values using deep learning (DL) algorithms. The conducted research explores the potential of long short-term memory (LSTM) artificial neural networks for times-series wind power generation forecasting. However, like many ML algorithms, LSTM network performance largely depends on a set of control parameters known as hyperparameters. Adequate selections are crucial to ensuring good performance. The process of selecting optimal hyperparameters may be framed as an optimization, and can therefore be handled as an optimization problem. Additionally, to identify patterns in the wind energy signal, variation mode decomposition (VMD) was applied before being forwarded as input to LSTM. A notable set of algorithms that excel at handling optimization are metaheuristics. This work, therefore, explored the potential of the sine cosine algorithm for hyperparameter tuning for LSTM networks. Furthermore, an improved version of the SCA is introduced to help further enhances the admirable ability of the original. The introduced model has been assessed on real-world wind farm data and attained favorable results, outperforming contemporary optimization algorithms tested in identical conditions." @default.
- W4387496772 created "2023-10-11" @default.
- W4387496772 creator A5006611914 @default.
- W4387496772 creator A5031836345 @default.
- W4387496772 creator A5061798785 @default.
- W4387496772 creator A5064081550 @default.
- W4387496772 creator A5068911769 @default.
- W4387496772 creator A5072469505 @default.
- W4387496772 creator A5091053048 @default.
- W4387496772 date "2023-01-01" @default.
- W4387496772 modified "2023-10-16" @default.
- W4387496772 title "The Long Short-Term Memory Tuning for Multi-step Ahead Wind Energy Forecasting Using Enhanced Sine Cosine Algorithm and Variation Mode Decomposition" @default.
- W4387496772 cites W1523741643 @default.
- W4387496772 cites W1984703120 @default.
- W4387496772 cites W2000982976 @default.
- W4387496772 cites W2064675550 @default.
- W4387496772 cites W2071151783 @default.
- W4387496772 cites W2075299467 @default.
- W4387496772 cites W2169064301 @default.
- W4387496772 cites W2185508628 @default.
- W4387496772 cites W2232317135 @default.
- W4387496772 cites W2988634615 @default.
- W4387496772 cites W3000399655 @default.
- W4387496772 cites W3045832254 @default.
- W4387496772 cites W3049090132 @default.
- W4387496772 cites W3080248826 @default.
- W4387496772 cites W3114266307 @default.
- W4387496772 cites W3119051141 @default.
- W4387496772 cites W3204852338 @default.
- W4387496772 cites W3206752413 @default.
- W4387496772 cites W3212797097 @default.
- W4387496772 cites W4226279318 @default.
- W4387496772 cites W4226499541 @default.
- W4387496772 cites W4281756816 @default.
- W4387496772 cites W4290719317 @default.
- W4387496772 doi "https://doi.org/10.1007/978-981-99-4626-6_3" @default.
- W4387496772 hasPublicationYear "2023" @default.
- W4387496772 type Work @default.
- W4387496772 citedByCount "0" @default.
- W4387496772 crossrefType "book-chapter" @default.
- W4387496772 hasAuthorship W4387496772A5006611914 @default.
- W4387496772 hasAuthorship W4387496772A5031836345 @default.
- W4387496772 hasAuthorship W4387496772A5061798785 @default.
- W4387496772 hasAuthorship W4387496772A5064081550 @default.
- W4387496772 hasAuthorship W4387496772A5068911769 @default.
- W4387496772 hasAuthorship W4387496772A5072469505 @default.
- W4387496772 hasAuthorship W4387496772A5091053048 @default.
- W4387496772 hasConcept C105795698 @default.
- W4387496772 hasConcept C11413529 @default.
- W4387496772 hasConcept C119599485 @default.
- W4387496772 hasConcept C119857082 @default.
- W4387496772 hasConcept C121332964 @default.
- W4387496772 hasConcept C127413603 @default.
- W4387496772 hasConcept C154945302 @default.
- W4387496772 hasConcept C163258240 @default.
- W4387496772 hasConcept C186370098 @default.
- W4387496772 hasConcept C186661526 @default.
- W4387496772 hasConcept C188573790 @default.
- W4387496772 hasConcept C2524010 @default.
- W4387496772 hasConcept C2781084341 @default.
- W4387496772 hasConcept C33923547 @default.
- W4387496772 hasConcept C41008148 @default.
- W4387496772 hasConcept C50644808 @default.
- W4387496772 hasConcept C62520636 @default.
- W4387496772 hasConcept C78600449 @default.
- W4387496772 hasConcept C8642999 @default.
- W4387496772 hasConcept C89227174 @default.
- W4387496772 hasConceptScore W4387496772C105795698 @default.
- W4387496772 hasConceptScore W4387496772C11413529 @default.
- W4387496772 hasConceptScore W4387496772C119599485 @default.
- W4387496772 hasConceptScore W4387496772C119857082 @default.
- W4387496772 hasConceptScore W4387496772C121332964 @default.
- W4387496772 hasConceptScore W4387496772C127413603 @default.
- W4387496772 hasConceptScore W4387496772C154945302 @default.
- W4387496772 hasConceptScore W4387496772C163258240 @default.
- W4387496772 hasConceptScore W4387496772C186370098 @default.
- W4387496772 hasConceptScore W4387496772C186661526 @default.
- W4387496772 hasConceptScore W4387496772C188573790 @default.
- W4387496772 hasConceptScore W4387496772C2524010 @default.
- W4387496772 hasConceptScore W4387496772C2781084341 @default.
- W4387496772 hasConceptScore W4387496772C33923547 @default.
- W4387496772 hasConceptScore W4387496772C41008148 @default.
- W4387496772 hasConceptScore W4387496772C50644808 @default.
- W4387496772 hasConceptScore W4387496772C62520636 @default.
- W4387496772 hasConceptScore W4387496772C78600449 @default.
- W4387496772 hasConceptScore W4387496772C8642999 @default.
- W4387496772 hasConceptScore W4387496772C89227174 @default.
- W4387496772 hasLocation W43874967721 @default.
- W4387496772 hasOpenAccess W4387496772 @default.
- W4387496772 hasPrimaryLocation W43874967721 @default.
- W4387496772 hasRelatedWork W1963538988 @default.
- W4387496772 hasRelatedWork W2034182965 @default.
- W4387496772 hasRelatedWork W2060606400 @default.
- W4387496772 hasRelatedWork W2102851390 @default.
- W4387496772 hasRelatedWork W2142241280 @default.
- W4387496772 hasRelatedWork W2246158493 @default.
- W4387496772 hasRelatedWork W2626641865 @default.
- W4387496772 hasRelatedWork W2946066052 @default.