Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387497008> ?p ?o ?g. }
- W4387497008 endingPage "S31" @default.
- W4387497008 startingPage "S30" @default.
- W4387497008 abstract "The prediction accuracy of a polygenic score (PGS) is highly determined by the size of the training sample. Although this sample is still limited for psychiatric disorders, these disorders are genetically correlated with multiple behavioral and physical phenotypes. These mostly quantitative phenotypes are much more accessible and thus currently have genome-wide association studies (GWAS) with millions of samples. Generating stand-alone PGS for publicly accessible GWAS summary statistics is nowadays possible with PGS methods that do not require a validation sample, like LDpred2-auto. There are some available methods that benefit from using genetically correlated phenotypes to increase prediction accuracy, including MTAG and wMT-SBLUP and that have been applied to psychiatric disorders. These methods require a pre-selection of the included phenotypes based on prior information about the genetic correlation estimates with the desired outcome. Here we show the results of a new method, multi-PGS, that does not require to pre-specify genetically correlated phenotypes but relies on an agnostic PGS library based on “all” publicly available GWAS summary statistics. We explore diverse applications of this multi-PGS for psychiatric disorders using the iPSYCH data. In practice, a large library of PGS including 937 scores was generated from publicly available GWAS summary statistics resources (GWAS Catalog, GWAS ATLAS, PGC) using LDpred2-auto. Then the PGS library together with covariates sex, birth year and 20 PCs were used as predictors in multivariate models. We used both penalized regression models (lasso) and gradient boosted trees (XGBoost). The out-of-sample prediction accuracy of the risk prediction models was assessed. First, we applied our multi-PGS strategy to predict ADHD, affective disorder, anorexia nervosa, autism, bipolar disorder and schizophrenia in iPSYCH. All multi-PGS models increased both R2 and logOR, with R2 increases of 4-fold on average and up to 9-fold for ADHD and autism. Increased prediction was also observed when compared to wMT-SBLUP. Interestingly, multiple PGS for the same phenotype were selected in the final model. For example, three different depression-related PGS (self-reported, medically diagnosed and broad depression) were included in the affective disorder multi-PGS. This indicates that non-overlapping signals from multiple GWAS of similar phenotypes can be combined to increase prediction accuracy. Next, we explored further the capacity of our multi-PGS to predict outcomes for which there are no available external GWAS summary statistics, as is the case for some sub-diagnoses and understudied psychiatric disorders. This question is inspired by a scenario where the studied outcome could benefit from PGS analyses, but there is still no GWAS for that outcome. Surprisingly, our results showed no decrease in prediction accuracy when the library did not include a PGS for the target disorder. Moreover, we applied generated multi-PGS for case-case predictions of highly comorbid disorders. For instance, a multi-PGS of ADHD vs. ASD explained 12% of the variance of the disjoint cases. Psychiatric disorders are very heterogeneous phenotypes, both genetically and etiologically. We exploit this feature to increase genetic prediction accuracy using multi-PGS constructed in an agnostic manner. Finally, we discuss the conflict prediction vs. explanation in the context of multi-PGS models." @default.
- W4387497008 created "2023-10-11" @default.
- W4387497008 creator A5015235673 @default.
- W4387497008 creator A5018168246 @default.
- W4387497008 creator A5031084349 @default.
- W4387497008 creator A5033000330 @default.
- W4387497008 creator A5035161779 @default.
- W4387497008 creator A5036406065 @default.
- W4387497008 creator A5044233598 @default.
- W4387497008 creator A5049442241 @default.
- W4387497008 creator A5051686843 @default.
- W4387497008 creator A5061525861 @default.
- W4387497008 creator A5062867099 @default.
- W4387497008 creator A5078389898 @default.
- W4387497008 creator A5084229505 @default.
- W4387497008 creator A5084421609 @default.
- W4387497008 creator A5087161248 @default.
- W4387497008 date "2023-10-01" @default.
- W4387497008 modified "2023-10-12" @default.
- W4387497008 title "ENHANCING POLYGENIC PREDICTION WITH AN AGNOSTIC MULTI-PGS METHOD THAT LEVERAGES HUNDREDS OF POLYGENIC SCORES" @default.
- W4387497008 doi "https://doi.org/10.1016/j.euroneuro.2023.08.065" @default.
- W4387497008 hasPublicationYear "2023" @default.
- W4387497008 type Work @default.
- W4387497008 citedByCount "0" @default.
- W4387497008 crossrefType "journal-article" @default.
- W4387497008 hasAuthorship W4387497008A5015235673 @default.
- W4387497008 hasAuthorship W4387497008A5018168246 @default.
- W4387497008 hasAuthorship W4387497008A5031084349 @default.
- W4387497008 hasAuthorship W4387497008A5033000330 @default.
- W4387497008 hasAuthorship W4387497008A5035161779 @default.
- W4387497008 hasAuthorship W4387497008A5036406065 @default.
- W4387497008 hasAuthorship W4387497008A5044233598 @default.
- W4387497008 hasAuthorship W4387497008A5049442241 @default.
- W4387497008 hasAuthorship W4387497008A5051686843 @default.
- W4387497008 hasAuthorship W4387497008A5061525861 @default.
- W4387497008 hasAuthorship W4387497008A5062867099 @default.
- W4387497008 hasAuthorship W4387497008A5078389898 @default.
- W4387497008 hasAuthorship W4387497008A5084229505 @default.
- W4387497008 hasAuthorship W4387497008A5084421609 @default.
- W4387497008 hasAuthorship W4387497008A5087161248 @default.
- W4387497008 hasConcept C104317684 @default.
- W4387497008 hasConcept C105795698 @default.
- W4387497008 hasConcept C106208931 @default.
- W4387497008 hasConcept C119043178 @default.
- W4387497008 hasConcept C119857082 @default.
- W4387497008 hasConcept C129848803 @default.
- W4387497008 hasConcept C135763542 @default.
- W4387497008 hasConcept C136764020 @default.
- W4387497008 hasConcept C153209595 @default.
- W4387497008 hasConcept C154945302 @default.
- W4387497008 hasConcept C161584116 @default.
- W4387497008 hasConcept C185592680 @default.
- W4387497008 hasConcept C198531522 @default.
- W4387497008 hasConcept C2993137441 @default.
- W4387497008 hasConcept C32792767 @default.
- W4387497008 hasConcept C33923547 @default.
- W4387497008 hasConcept C37616216 @default.
- W4387497008 hasConcept C41008148 @default.
- W4387497008 hasConcept C43617362 @default.
- W4387497008 hasConcept C54355233 @default.
- W4387497008 hasConcept C70721500 @default.
- W4387497008 hasConcept C83546350 @default.
- W4387497008 hasConcept C86803240 @default.
- W4387497008 hasConceptScore W4387497008C104317684 @default.
- W4387497008 hasConceptScore W4387497008C105795698 @default.
- W4387497008 hasConceptScore W4387497008C106208931 @default.
- W4387497008 hasConceptScore W4387497008C119043178 @default.
- W4387497008 hasConceptScore W4387497008C119857082 @default.
- W4387497008 hasConceptScore W4387497008C129848803 @default.
- W4387497008 hasConceptScore W4387497008C135763542 @default.
- W4387497008 hasConceptScore W4387497008C136764020 @default.
- W4387497008 hasConceptScore W4387497008C153209595 @default.
- W4387497008 hasConceptScore W4387497008C154945302 @default.
- W4387497008 hasConceptScore W4387497008C161584116 @default.
- W4387497008 hasConceptScore W4387497008C185592680 @default.
- W4387497008 hasConceptScore W4387497008C198531522 @default.
- W4387497008 hasConceptScore W4387497008C2993137441 @default.
- W4387497008 hasConceptScore W4387497008C32792767 @default.
- W4387497008 hasConceptScore W4387497008C33923547 @default.
- W4387497008 hasConceptScore W4387497008C37616216 @default.
- W4387497008 hasConceptScore W4387497008C41008148 @default.
- W4387497008 hasConceptScore W4387497008C43617362 @default.
- W4387497008 hasConceptScore W4387497008C54355233 @default.
- W4387497008 hasConceptScore W4387497008C70721500 @default.
- W4387497008 hasConceptScore W4387497008C83546350 @default.
- W4387497008 hasConceptScore W4387497008C86803240 @default.
- W4387497008 hasLocation W43874970081 @default.
- W4387497008 hasOpenAccess W4387497008 @default.
- W4387497008 hasPrimaryLocation W43874970081 @default.
- W4387497008 hasRelatedWork W128985311 @default.
- W4387497008 hasRelatedWork W2096089271 @default.
- W4387497008 hasRelatedWork W2511384863 @default.
- W4387497008 hasRelatedWork W2609167837 @default.
- W4387497008 hasRelatedWork W2800721711 @default.
- W4387497008 hasRelatedWork W2950093545 @default.
- W4387497008 hasRelatedWork W2985746494 @default.
- W4387497008 hasRelatedWork W3142742933 @default.
- W4387497008 hasRelatedWork W4205405116 @default.