Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387497674> ?p ?o ?g. }
- W4387497674 endingPage "102203" @default.
- W4387497674 startingPage "102203" @default.
- W4387497674 abstract "International business research often links the cultural and institutional characteristics of countries to the features of the individuals inhabiting these countries. A distinct approach to analyzing such multilevel problems with deep learning and explainable artificial intelligence methods is presented, using country characteristics as explicit spatial coordinates. Deep learning is tolerant of noise and faults and can approximate arbitrarily complex mathematical structures by developing multiple abstractions. An applied example demonstrates the applicability of this approach by exploring the effect of personal-care advertising spending in 27 countries on the subjective happiness of 376,442 individuals, indicating a statistically significant positive effect, albeit with a trivial effect size." @default.
- W4387497674 created "2023-10-11" @default.
- W4387497674 creator A5090296843 @default.
- W4387497674 date "2023-10-01" @default.
- W4387497674 modified "2023-10-12" @default.
- W4387497674 title "Exploring multilevel data with deep learning and XAI: The effect of personal-care advertising spending on subjective happiness" @default.
- W4387497674 cites W1678356000 @default.
- W4387497674 cites W1695445891 @default.
- W4387497674 cites W1964025751 @default.
- W4387497674 cites W1968457312 @default.
- W4387497674 cites W1976615966 @default.
- W4387497674 cites W1978004231 @default.
- W4387497674 cites W1980157098 @default.
- W4387497674 cites W1980314781 @default.
- W4387497674 cites W1982983854 @default.
- W4387497674 cites W1987985244 @default.
- W4387497674 cites W1988527815 @default.
- W4387497674 cites W1988539127 @default.
- W4387497674 cites W1991128340 @default.
- W4387497674 cites W1996215710 @default.
- W4387497674 cites W2002278006 @default.
- W4387497674 cites W2003710489 @default.
- W4387497674 cites W2004549974 @default.
- W4387497674 cites W2005926822 @default.
- W4387497674 cites W2006067350 @default.
- W4387497674 cites W2006353560 @default.
- W4387497674 cites W2009712724 @default.
- W4387497674 cites W2012160231 @default.
- W4387497674 cites W2012500776 @default.
- W4387497674 cites W2016603580 @default.
- W4387497674 cites W2017679606 @default.
- W4387497674 cites W2019179659 @default.
- W4387497674 cites W2019279857 @default.
- W4387497674 cites W2022851396 @default.
- W4387497674 cites W2025334042 @default.
- W4387497674 cites W2027238378 @default.
- W4387497674 cites W2027252260 @default.
- W4387497674 cites W2027442956 @default.
- W4387497674 cites W2028183617 @default.
- W4387497674 cites W2030133041 @default.
- W4387497674 cites W2030287426 @default.
- W4387497674 cites W2032628191 @default.
- W4387497674 cites W2034225657 @default.
- W4387497674 cites W2044695503 @default.
- W4387497674 cites W2047662493 @default.
- W4387497674 cites W2050616469 @default.
- W4387497674 cites W2054799126 @default.
- W4387497674 cites W2056018615 @default.
- W4387497674 cites W2058700934 @default.
- W4387497674 cites W2061167995 @default.
- W4387497674 cites W2070808447 @default.
- W4387497674 cites W2071907198 @default.
- W4387497674 cites W2072500363 @default.
- W4387497674 cites W2072642325 @default.
- W4387497674 cites W2074931672 @default.
- W4387497674 cites W2077654283 @default.
- W4387497674 cites W2080478841 @default.
- W4387497674 cites W2088858133 @default.
- W4387497674 cites W2097104559 @default.
- W4387497674 cites W2097180063 @default.
- W4387497674 cites W2102080473 @default.
- W4387497674 cites W2106096361 @default.
- W4387497674 cites W2108586937 @default.
- W4387497674 cites W2113253256 @default.
- W4387497674 cites W2124695873 @default.
- W4387497674 cites W2125378649 @default.
- W4387497674 cites W2131600854 @default.
- W4387497674 cites W2131922828 @default.
- W4387497674 cites W2135226596 @default.
- W4387497674 cites W2136922672 @default.
- W4387497674 cites W2139504286 @default.
- W4387497674 cites W2141761029 @default.
- W4387497674 cites W2142881033 @default.
- W4387497674 cites W2145645145 @default.
- W4387497674 cites W2152450207 @default.
- W4387497674 cites W2156578945 @default.
- W4387497674 cites W2162301759 @default.
- W4387497674 cites W2167680020 @default.
- W4387497674 cites W2168467006 @default.
- W4387497674 cites W2169177719 @default.
- W4387497674 cites W2205651096 @default.
- W4387497674 cites W2209976290 @default.
- W4387497674 cites W2215257634 @default.
- W4387497674 cites W2216356458 @default.
- W4387497674 cites W2277331298 @default.
- W4387497674 cites W2311643318 @default.
- W4387497674 cites W2318566453 @default.
- W4387497674 cites W2342610039 @default.
- W4387497674 cites W2416646484 @default.
- W4387497674 cites W2516447198 @default.
- W4387497674 cites W2591253698 @default.
- W4387497674 cites W2593182953 @default.
- W4387497674 cites W2594563067 @default.
- W4387497674 cites W2769201128 @default.
- W4387497674 cites W2770984456 @default.
- W4387497674 cites W2782799656 @default.
- W4387497674 cites W2792190395 @default.
- W4387497674 cites W2890256689 @default.