Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387500329> ?p ?o ?g. }
- W4387500329 abstract "Abstract Three-quarters of lifetime mental illness occurs by the age of 24, but relatively little is known about how to robustly identify youth at risk to target intervention efforts known to improve outcomes. Barriers to knowledge have included obtaining robust predictions while simultaneously analyzing large numbers of different types of candidate predictors. In a new, large, transdiagnostic youth sample and multidomain high-dimension data, we used 160 candidate predictors encompassing neural, prenatal, developmental, physiologic, sociocultural, environmental, emotional and cognitive features and leveraged three different machine learning algorithms optimized with a novel artificial intelligence meta-learning technique to predict individual cases of anxiety, depression, attention deficit, disruptive behaviors and post-traumatic stress. Our models tested well in unseen, held-out data (AUC ≥ 0.94). By utilizing a large-scale design and advanced computational approaches, we were able to compare the relative predictive ability of neural versus psychosocial features in a principled manner and found that psychosocial features consistently outperformed neural metrics in their relative ability to deliver robust predictions of individual cases. We found that deep learning with artificial neural networks and tree-based learning with XGBoost outperformed logistic regression with ElasticNet, supporting the conceptualization of mental illnesses as multifactorial disease processes with non-linear relationships among predictors that can be robustly modeled with computational psychiatry techniques. To our knowledge, this is the first study to test the relative predictive ability of these gold-standard algorithms from different classes across multiple mental health conditions in youth within the same study design in multidomain data utilizing >100 candidate predictors. Further research is suggested to explore these findings in longitudinal data and validate results in an external dataset." @default.
- W4387500329 created "2023-10-11" @default.
- W4387500329 creator A5007785145 @default.
- W4387500329 creator A5018100435 @default.
- W4387500329 creator A5035664918 @default.
- W4387500329 creator A5037361432 @default.
- W4387500329 creator A5077352873 @default.
- W4387500329 creator A5083450863 @default.
- W4387500329 date "2023-10-10" @default.
- W4387500329 modified "2023-10-13" @default.
- W4387500329 title "Predicting individual cases of major adolescent psychiatric conditions with artificial intelligence" @default.
- W4387500329 cites W1782282027 @default.
- W4387500329 cites W1973741448 @default.
- W4387500329 cites W1973776237 @default.
- W4387500329 cites W1983302342 @default.
- W4387500329 cites W2006956275 @default.
- W4387500329 cites W2017451655 @default.
- W4387500329 cites W2058187841 @default.
- W4387500329 cites W2078963943 @default.
- W4387500329 cites W2117812871 @default.
- W4387500329 cites W2118826874 @default.
- W4387500329 cites W2122825543 @default.
- W4387500329 cites W2154049245 @default.
- W4387500329 cites W2170702893 @default.
- W4387500329 cites W2172007658 @default.
- W4387500329 cites W2605675783 @default.
- W4387500329 cites W2616931359 @default.
- W4387500329 cites W2655824372 @default.
- W4387500329 cites W2759512921 @default.
- W4387500329 cites W2770221156 @default.
- W4387500329 cites W2780601052 @default.
- W4387500329 cites W2911964244 @default.
- W4387500329 cites W2945886864 @default.
- W4387500329 cites W2973999361 @default.
- W4387500329 cites W2990091959 @default.
- W4387500329 cites W2993242472 @default.
- W4387500329 cites W3035624610 @default.
- W4387500329 cites W3102476541 @default.
- W4387500329 cites W3127700622 @default.
- W4387500329 cites W3138306241 @default.
- W4387500329 cites W3179164182 @default.
- W4387500329 cites W3202523924 @default.
- W4387500329 cites W3216325259 @default.
- W4387500329 cites W4200318716 @default.
- W4387500329 cites W4214551830 @default.
- W4387500329 cites W4220838968 @default.
- W4387500329 cites W4220988686 @default.
- W4387500329 cites W4223456145 @default.
- W4387500329 cites W4229336073 @default.
- W4387500329 cites W4296201886 @default.
- W4387500329 cites W429766147 @default.
- W4387500329 cites W4307726323 @default.
- W4387500329 cites W4310960650 @default.
- W4387500329 cites W4311550359 @default.
- W4387500329 cites W4312019821 @default.
- W4387500329 doi "https://doi.org/10.1038/s41398-023-02599-9" @default.
- W4387500329 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37816706" @default.
- W4387500329 hasPublicationYear "2023" @default.
- W4387500329 type Work @default.
- W4387500329 citedByCount "0" @default.
- W4387500329 crossrefType "journal-article" @default.
- W4387500329 hasAuthorship W4387500329A5007785145 @default.
- W4387500329 hasAuthorship W4387500329A5018100435 @default.
- W4387500329 hasAuthorship W4387500329A5035664918 @default.
- W4387500329 hasAuthorship W4387500329A5037361432 @default.
- W4387500329 hasAuthorship W4387500329A5077352873 @default.
- W4387500329 hasAuthorship W4387500329A5083450863 @default.
- W4387500329 hasBestOaLocation W43875003291 @default.
- W4387500329 hasConcept C118552586 @default.
- W4387500329 hasConcept C119857082 @default.
- W4387500329 hasConcept C134362201 @default.
- W4387500329 hasConcept C150966472 @default.
- W4387500329 hasConcept C154945302 @default.
- W4387500329 hasConcept C15744967 @default.
- W4387500329 hasConcept C41008148 @default.
- W4387500329 hasConcept C50644808 @default.
- W4387500329 hasConcept C558461103 @default.
- W4387500329 hasConcept C70410870 @default.
- W4387500329 hasConceptScore W4387500329C118552586 @default.
- W4387500329 hasConceptScore W4387500329C119857082 @default.
- W4387500329 hasConceptScore W4387500329C134362201 @default.
- W4387500329 hasConceptScore W4387500329C150966472 @default.
- W4387500329 hasConceptScore W4387500329C154945302 @default.
- W4387500329 hasConceptScore W4387500329C15744967 @default.
- W4387500329 hasConceptScore W4387500329C41008148 @default.
- W4387500329 hasConceptScore W4387500329C50644808 @default.
- W4387500329 hasConceptScore W4387500329C558461103 @default.
- W4387500329 hasConceptScore W4387500329C70410870 @default.
- W4387500329 hasFunder F4320306076 @default.
- W4387500329 hasFunder F4320337346 @default.
- W4387500329 hasIssue "1" @default.
- W4387500329 hasLocation W43875003291 @default.
- W4387500329 hasLocation W43875003292 @default.
- W4387500329 hasOpenAccess W4387500329 @default.
- W4387500329 hasPrimaryLocation W43875003291 @default.
- W4387500329 hasRelatedWork W1913123124 @default.
- W4387500329 hasRelatedWork W1986077376 @default.
- W4387500329 hasRelatedWork W2032387653 @default.
- W4387500329 hasRelatedWork W2083246719 @default.
- W4387500329 hasRelatedWork W2163175145 @default.