Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387501835> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387501835 endingPage "109662" @default.
- W4387501835 startingPage "109662" @default.
- W4387501835 abstract "Accurate segmentation of liver and tumor regions in medical imaging is crucial for the diagnosis, treatment, and monitoring of hepatocellular carcinoma (HCC) patients. However, manual segmentation is time-consuming and subject to inter- and intra-rater variability. Therefore, automated methods are necessary but require rigorous validation of high-quality segmentations based on a consensus of raters. To address the need for reliable and comprehensive data in this domain, we present LiverHccSeg, a dataset that provides liver and tumor segmentations on multiphasic contrast-enhanced magnetic resonance imaging from two board-approved abdominal radiologists, along with an analysis of inter-rater agreement. LiverHccSeg provides a curated resource for liver and HCC tumor segmentation tasks. The dataset includes a scientific reading and co-registered contrast-enhanced multiphasic magnetic resonance imaging (MRI) scans with corresponding manual segmentations by two board-approved abdominal radiologists and relevant metadata and offers researchers a comprehensive foundation for external validation, and benchmarking of liver and tumor segmentation algorithms. The dataset also provides an analysis of the agreement between the two sets of liver and tumor segmentations. Through the calculation of appropriate segmentation metrics, we provide insights into the consistency and variability in liver and tumor segmentations among the radiologists. A total of 17 cases were included for liver segmentation and 14 cases for HCC tumor segmentation. Liver segmentations demonstrates high segmentation agreement (mean Dice, 0.95 ± 0.01 [standard deviation]) and HCC tumor segmentations showed higher variation (mean Dice, 0.85 ± 0.16 [standard deviation]). The applications of LiverHccSeg can be manifold, ranging from testing machine learning algorithms on public external data to radiomic feature analyses. Leveraging the inter-rater agreement analysis within the dataset, researchers can investigate the impact of variability on segmentation performance and explore methods to enhance the accuracy and robustness of liver and tumor segmentation algorithms in HCC patients. By making this dataset publicly available, LiverHccSeg aims to foster collaborations, facilitate innovative solutions, and ultimately improve patient outcomes in the diagnosis and treatment of HCC." @default.
- W4387501835 created "2023-10-11" @default.
- W4387501835 creator A5005241677 @default.
- W4387501835 creator A5062012428 @default.
- W4387501835 creator A5063055209 @default.
- W4387501835 creator A5083553196 @default.
- W4387501835 creator A5089210413 @default.
- W4387501835 date "2023-12-01" @default.
- W4387501835 modified "2023-10-15" @default.
- W4387501835 title "LiverHccSeg: A Publicly Available Multiphasic MRI Dataset with Liver and HCC Tumor Segmentations and Inter-Rater Agreement Analysis" @default.
- W4387501835 cites W2000336618 @default.
- W4387501835 cites W2026616100 @default.
- W4387501835 cites W2046768451 @default.
- W4387501835 cites W2105456967 @default.
- W4387501835 cites W2113576511 @default.
- W4387501835 cites W2552432336 @default.
- W4387501835 cites W2893608205 @default.
- W4387501835 cites W2911188335 @default.
- W4387501835 cites W3128646645 @default.
- W4387501835 cites W3214856959 @default.
- W4387501835 doi "https://doi.org/10.1016/j.dib.2023.109662" @default.
- W4387501835 hasPublicationYear "2023" @default.
- W4387501835 type Work @default.
- W4387501835 citedByCount "0" @default.
- W4387501835 crossrefType "journal-article" @default.
- W4387501835 hasAuthorship W4387501835A5005241677 @default.
- W4387501835 hasAuthorship W4387501835A5062012428 @default.
- W4387501835 hasAuthorship W4387501835A5063055209 @default.
- W4387501835 hasAuthorship W4387501835A5083553196 @default.
- W4387501835 hasAuthorship W4387501835A5089210413 @default.
- W4387501835 hasBestOaLocation W43875018351 @default.
- W4387501835 hasConcept C126322002 @default.
- W4387501835 hasConcept C126838900 @default.
- W4387501835 hasConcept C143409427 @default.
- W4387501835 hasConcept C154945302 @default.
- W4387501835 hasConcept C2778019345 @default.
- W4387501835 hasConcept C41008148 @default.
- W4387501835 hasConcept C71924100 @default.
- W4387501835 hasConcept C89600930 @default.
- W4387501835 hasConceptScore W4387501835C126322002 @default.
- W4387501835 hasConceptScore W4387501835C126838900 @default.
- W4387501835 hasConceptScore W4387501835C143409427 @default.
- W4387501835 hasConceptScore W4387501835C154945302 @default.
- W4387501835 hasConceptScore W4387501835C2778019345 @default.
- W4387501835 hasConceptScore W4387501835C41008148 @default.
- W4387501835 hasConceptScore W4387501835C71924100 @default.
- W4387501835 hasConceptScore W4387501835C89600930 @default.
- W4387501835 hasLocation W43875018351 @default.
- W4387501835 hasOpenAccess W4387501835 @default.
- W4387501835 hasPrimaryLocation W43875018351 @default.
- W4387501835 hasRelatedWork W1570838273 @default.
- W4387501835 hasRelatedWork W2337719538 @default.
- W4387501835 hasRelatedWork W2385390897 @default.
- W4387501835 hasRelatedWork W2404951810 @default.
- W4387501835 hasRelatedWork W2410885201 @default.
- W4387501835 hasRelatedWork W2417822880 @default.
- W4387501835 hasRelatedWork W2418745692 @default.
- W4387501835 hasRelatedWork W2809701302 @default.
- W4387501835 hasRelatedWork W3172842848 @default.
- W4387501835 hasRelatedWork W628600844 @default.
- W4387501835 hasVolume "51" @default.
- W4387501835 isParatext "false" @default.
- W4387501835 isRetracted "false" @default.
- W4387501835 workType "article" @default.