Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387502070> ?p ?o ?g. }
- W4387502070 abstract "We present a general approach to the bulk-boundary correspondence of noninvertible topological phases, including both topological and fracton orders. This is achieved by a novel bulk construction protocol where solvable (d+1) <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:mo stretchy=true form=prefix>(</mml:mo><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=true form=postfix>)</mml:mo></mml:mrow></mml:math> -dimensional bulk models with noninvertible topology are constructed from the so-called generalized Ising (GI) models in d <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>d</mml:mi></mml:math> dimensions. The GI models can then terminate on the boundaries of the bulk models. The construction generates abundant examples, including not only prototype ones such as mathbb{Z}_2 <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> toric code models in any dimensions no less than two, and the X-cube fracton model, but also more diverse ones such as the mathbb{Z}_2x mathbb{Z}_2 <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:msub><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>x</mml:mo><mml:msub><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> topological order, the 4d mathbb{Z}_2 <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>ℤ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> topological order with pure-loop excitations, etc. The boundary of the solvable model is potentially anomalous and corresponds to precisely only sectors of the GI model that host certain total symmetry charges and/or satisfy certain boundary conditions. We derive a concrete condition for such bulk-boundary correspondence. The condition is violated only when the bulk model is either trivial or fracton ordered. A generalized notion of Kramers-Wannier duality plays an important role in the construction. Also, utilizing the duality, we find an example where a single anomalous theory can be realized on the boundaries of two distinct bulk fracton models, a phenomenon not expected in the case of topological orders. More generally, topological orders may also be generated starting with lattice models beyond the GI models, such as those with symmetry protected topological orders, through a variant bulk construction, which we provide in an appendix." @default.
- W4387502070 created "2023-10-11" @default.
- W4387502070 creator A5041516314 @default.
- W4387502070 creator A5083928020 @default.
- W4387502070 date "2023-10-10" @default.
- W4387502070 modified "2023-10-16" @default.
- W4387502070 title "Towards non-invertible anomalies from generalized Ising models" @default.
- W4387502070 cites W1494769674 @default.
- W4387502070 cites W1529168148 @default.
- W4387502070 cites W1551307471 @default.
- W4387502070 cites W1601700513 @default.
- W4387502070 cites W1740640945 @default.
- W4387502070 cites W1809639718 @default.
- W4387502070 cites W1844213968 @default.
- W4387502070 cites W1892605745 @default.
- W4387502070 cites W1969178136 @default.
- W4387502070 cites W1985342796 @default.
- W4387502070 cites W1990577812 @default.
- W4387502070 cites W1993382772 @default.
- W4387502070 cites W1995034796 @default.
- W4387502070 cites W2012529765 @default.
- W4387502070 cites W2013345719 @default.
- W4387502070 cites W2022315766 @default.
- W4387502070 cites W2034225373 @default.
- W4387502070 cites W2038255126 @default.
- W4387502070 cites W2047906660 @default.
- W4387502070 cites W2048623062 @default.
- W4387502070 cites W2059044209 @default.
- W4387502070 cites W2059642817 @default.
- W4387502070 cites W2077377697 @default.
- W4387502070 cites W2083123179 @default.
- W4387502070 cites W2086999135 @default.
- W4387502070 cites W2092686180 @default.
- W4387502070 cites W2097361916 @default.
- W4387502070 cites W2105583567 @default.
- W4387502070 cites W2107200367 @default.
- W4387502070 cites W2108641779 @default.
- W4387502070 cites W2113869906 @default.
- W4387502070 cites W2131970804 @default.
- W4387502070 cites W2135273380 @default.
- W4387502070 cites W2139225574 @default.
- W4387502070 cites W2141192973 @default.
- W4387502070 cites W2141708961 @default.
- W4387502070 cites W2143174693 @default.
- W4387502070 cites W2157494229 @default.
- W4387502070 cites W2242496204 @default.
- W4387502070 cites W2298547144 @default.
- W4387502070 cites W2467626191 @default.
- W4387502070 cites W2558504224 @default.
- W4387502070 cites W2567789734 @default.
- W4387502070 cites W2589561763 @default.
- W4387502070 cites W2611279674 @default.
- W4387502070 cites W2626479459 @default.
- W4387502070 cites W2735709290 @default.
- W4387502070 cites W2747292959 @default.
- W4387502070 cites W2786370293 @default.
- W4387502070 cites W2892972447 @default.
- W4387502070 cites W2897570689 @default.
- W4387502070 cites W2914441317 @default.
- W4387502070 cites W2934551296 @default.
- W4387502070 cites W2943871663 @default.
- W4387502070 cites W2947574411 @default.
- W4387502070 cites W2951252175 @default.
- W4387502070 cites W2963083281 @default.
- W4387502070 cites W2965000219 @default.
- W4387502070 cites W2981930915 @default.
- W4387502070 cites W2990355613 @default.
- W4387502070 cites W2990961515 @default.
- W4387502070 cites W3048635669 @default.
- W4387502070 cites W3081001128 @default.
- W4387502070 cites W3098077061 @default.
- W4387502070 cites W3098587305 @default.
- W4387502070 cites W3098607210 @default.
- W4387502070 cites W3098639342 @default.
- W4387502070 cites W3098902203 @default.
- W4387502070 cites W3099271308 @default.
- W4387502070 cites W3099593466 @default.
- W4387502070 cites W3099735681 @default.
- W4387502070 cites W3100008668 @default.
- W4387502070 cites W3100012054 @default.
- W4387502070 cites W3100736866 @default.
- W4387502070 cites W3103039502 @default.
- W4387502070 cites W3103206637 @default.
- W4387502070 cites W3103436222 @default.
- W4387502070 cites W3122984058 @default.
- W4387502070 cites W3132177720 @default.
- W4387502070 cites W3170857746 @default.
- W4387502070 cites W3172575010 @default.
- W4387502070 cites W3175329602 @default.
- W4387502070 cites W3182569053 @default.
- W4387502070 cites W3193829178 @default.
- W4387502070 cites W3194219795 @default.
- W4387502070 cites W4205490065 @default.
- W4387502070 cites W4213198315 @default.
- W4387502070 cites W4288055927 @default.
- W4387502070 cites W4306887981 @default.
- W4387502070 cites W4308022995 @default.
- W4387502070 cites W4312083293 @default.
- W4387502070 cites W4362128601 @default.
- W4387502070 cites W4366823256 @default.