Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387510195> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4387510195 endingPage "107260" @default.
- W4387510195 startingPage "107260" @default.
- W4387510195 abstract "Image semantic segmentation is a technique that distinguishes different kinds of things in an image by assigning a label to each point in a target category based on its semantics. The Deeplabv3+ image semantic segmentation method currently in use has high computational complexity and large memory consumption, making it difficult to deploy on embedded platforms with limited computational power. When extracting image feature information, Deeplabv3+ struggles to fully utilize multiscale information. This can result in a loss of detailed information and damage to segmentation accuracy. An improved image semantic segmentation method based on the DeepLabv3+ network is proposed, with the lightweight MobileNetv2 serving as the model's backbone. The ECAnet channel attention mechanism is applied to low-level features, reducing computational complexity and improving target boundary clarity. The polarized self-attention mechanism is introduced after the ASPP module to improve the spatial feature representation of the feature map. Validated on the VOC2012 dataset, the experimental results indicate that the improved model achieved an MloU of 69.29% and a mAP of 80.41%, which can predict finer semantic segmentation results and effectively optimize the model complexity and segmentation accuracy." @default.
- W4387510195 created "2023-10-11" @default.
- W4387510195 creator A5014632087 @default.
- W4387510195 creator A5036275015 @default.
- W4387510195 creator A5055872945 @default.
- W4387510195 creator A5061810022 @default.
- W4387510195 creator A5068289723 @default.
- W4387510195 creator A5089125870 @default.
- W4387510195 date "2024-01-01" @default.
- W4387510195 modified "2023-10-12" @default.
- W4387510195 title "Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism" @default.
- W4387510195 cites W1159302035 @default.
- W4387510195 cites W1997709480 @default.
- W4387510195 cites W2104095591 @default.
- W4387510195 cites W2133059825 @default.
- W4387510195 cites W2152632881 @default.
- W4387510195 cites W2154996879 @default.
- W4387510195 cites W2412782625 @default.
- W4387510195 cites W2793268137 @default.
- W4387510195 cites W2905617204 @default.
- W4387510195 cites W2963881378 @default.
- W4387510195 cites W2999338474 @default.
- W4387510195 cites W4223509075 @default.
- W4387510195 cites W4283457846 @default.
- W4387510195 cites W4296260627 @default.
- W4387510195 cites W4303980418 @default.
- W4387510195 cites W4353070475 @default.
- W4387510195 doi "https://doi.org/10.1016/j.engappai.2023.107260" @default.
- W4387510195 hasPublicationYear "2024" @default.
- W4387510195 type Work @default.
- W4387510195 citedByCount "0" @default.
- W4387510195 crossrefType "journal-article" @default.
- W4387510195 hasAuthorship W4387510195A5014632087 @default.
- W4387510195 hasAuthorship W4387510195A5036275015 @default.
- W4387510195 hasAuthorship W4387510195A5055872945 @default.
- W4387510195 hasAuthorship W4387510195A5061810022 @default.
- W4387510195 hasAuthorship W4387510195A5068289723 @default.
- W4387510195 hasAuthorship W4387510195A5089125870 @default.
- W4387510195 hasConcept C11413529 @default.
- W4387510195 hasConcept C124504099 @default.
- W4387510195 hasConcept C138885662 @default.
- W4387510195 hasConcept C153180895 @default.
- W4387510195 hasConcept C154945302 @default.
- W4387510195 hasConcept C179799912 @default.
- W4387510195 hasConcept C184337299 @default.
- W4387510195 hasConcept C199360897 @default.
- W4387510195 hasConcept C2776401178 @default.
- W4387510195 hasConcept C31972630 @default.
- W4387510195 hasConcept C41008148 @default.
- W4387510195 hasConcept C41895202 @default.
- W4387510195 hasConcept C89600930 @default.
- W4387510195 hasConceptScore W4387510195C11413529 @default.
- W4387510195 hasConceptScore W4387510195C124504099 @default.
- W4387510195 hasConceptScore W4387510195C138885662 @default.
- W4387510195 hasConceptScore W4387510195C153180895 @default.
- W4387510195 hasConceptScore W4387510195C154945302 @default.
- W4387510195 hasConceptScore W4387510195C179799912 @default.
- W4387510195 hasConceptScore W4387510195C184337299 @default.
- W4387510195 hasConceptScore W4387510195C199360897 @default.
- W4387510195 hasConceptScore W4387510195C2776401178 @default.
- W4387510195 hasConceptScore W4387510195C31972630 @default.
- W4387510195 hasConceptScore W4387510195C41008148 @default.
- W4387510195 hasConceptScore W4387510195C41895202 @default.
- W4387510195 hasConceptScore W4387510195C89600930 @default.
- W4387510195 hasLocation W43875101951 @default.
- W4387510195 hasOpenAccess W4387510195 @default.
- W4387510195 hasPrimaryLocation W43875101951 @default.
- W4387510195 hasRelatedWork W1522196789 @default.
- W4387510195 hasRelatedWork W1992327129 @default.
- W4387510195 hasRelatedWork W2393351060 @default.
- W4387510195 hasRelatedWork W2501551404 @default.
- W4387510195 hasRelatedWork W2977677679 @default.
- W4387510195 hasRelatedWork W3112772842 @default.
- W4387510195 hasRelatedWork W4324315429 @default.
- W4387510195 hasRelatedWork W4366829857 @default.
- W4387510195 hasRelatedWork W4379231730 @default.
- W4387510195 hasRelatedWork W4385583601 @default.
- W4387510195 hasVolume "127" @default.
- W4387510195 isParatext "false" @default.
- W4387510195 isRetracted "false" @default.
- W4387510195 workType "article" @default.