Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387514059> ?p ?o ?g. }
- W4387514059 abstract "Introduction Intelligent monitoring systems must be put in place to practice precision agriculture. In this context, computer vision and artificial intelligence techniques can be applied to monitor and prevent pests, such as that of the olive fly. These techniques are a tool to discover patterns and abnormalities in the data, which helps the early detection of pests and the prompt administration of corrective measures. However, there are significant challenges due to the lack of data to apply state of the art Deep Learning techniques. Methods This article examines the detection and classification of the olive fly using the Random Forest and Support Vector Machine algorithms, as well as their application in an electronic trap version based on a Raspberry Pi B+ board. Results The combination of the two methods is suggested to increase the accuracy of the classification results while working with a small training data set. Combining both techniques for olive fly detection yields an accuracy of 89.1%, which increases to 94.5% for SVM and 91.9% for RF when comparing all fly species to other insects. Discussion This research results reports a successful implementation of ML in an electronic trap system for olive fly detection, providing valuable insights and benefits. The opportunities of using small IoT devices for image classification opens new possibilities, emphasizing the significance of ML in optimizing resource usage and enhancing privacy protection. As the system grows by increasing the number of electronic traps, more data will be available. Therefore, it holds the potential to further enhance accuracy by learning from multiple trap systems, making it a promising tool for effective and sustainable fly population management." @default.
- W4387514059 created "2023-10-11" @default.
- W4387514059 creator A5027850952 @default.
- W4387514059 creator A5058481383 @default.
- W4387514059 creator A5065854551 @default.
- W4387514059 creator A5066825613 @default.
- W4387514059 date "2023-10-10" @default.
- W4387514059 modified "2023-10-12" @default.
- W4387514059 title "Remote fruit fly detection using computer vision and machine learning-based electronic trap" @default.
- W4387514059 cites W2023787333 @default.
- W4387514059 cites W2029538739 @default.
- W4387514059 cites W2086760928 @default.
- W4387514059 cites W2108598243 @default.
- W4387514059 cites W2112796928 @default.
- W4387514059 cites W2120474334 @default.
- W4387514059 cites W2466877391 @default.
- W4387514059 cites W2618530766 @default.
- W4387514059 cites W2810358795 @default.
- W4387514059 cites W2911964244 @default.
- W4387514059 cites W2921961830 @default.
- W4387514059 cites W2951042326 @default.
- W4387514059 cites W2954996726 @default.
- W4387514059 cites W2962782553 @default.
- W4387514059 cites W2979967983 @default.
- W4387514059 cites W2989523822 @default.
- W4387514059 cites W3011634111 @default.
- W4387514059 cites W3013783358 @default.
- W4387514059 cites W3046220160 @default.
- W4387514059 cites W3048473450 @default.
- W4387514059 cites W3087314369 @default.
- W4387514059 cites W3091008281 @default.
- W4387514059 cites W3118101189 @default.
- W4387514059 cites W3162893763 @default.
- W4387514059 cites W3208506014 @default.
- W4387514059 cites W4221083601 @default.
- W4387514059 cites W4225797178 @default.
- W4387514059 cites W4233104424 @default.
- W4387514059 cites W4283320187 @default.
- W4387514059 cites W4297775537 @default.
- W4387514059 cites W4324342085 @default.
- W4387514059 cites W4364376158 @default.
- W4387514059 cites W4375866925 @default.
- W4387514059 doi "https://doi.org/10.3389/fpls.2023.1241576" @default.
- W4387514059 hasPublicationYear "2023" @default.
- W4387514059 type Work @default.
- W4387514059 citedByCount "0" @default.
- W4387514059 crossrefType "journal-article" @default.
- W4387514059 hasAuthorship W4387514059A5027850952 @default.
- W4387514059 hasAuthorship W4387514059A5058481383 @default.
- W4387514059 hasAuthorship W4387514059A5065854551 @default.
- W4387514059 hasAuthorship W4387514059A5066825613 @default.
- W4387514059 hasBestOaLocation W43875140591 @default.
- W4387514059 hasConcept C111919701 @default.
- W4387514059 hasConcept C119857082 @default.
- W4387514059 hasConcept C121099081 @default.
- W4387514059 hasConcept C12267149 @default.
- W4387514059 hasConcept C127413603 @default.
- W4387514059 hasConcept C149635348 @default.
- W4387514059 hasConcept C151730666 @default.
- W4387514059 hasConcept C154945302 @default.
- W4387514059 hasConcept C169258074 @default.
- W4387514059 hasConcept C177264268 @default.
- W4387514059 hasConcept C199360897 @default.
- W4387514059 hasConcept C2779343474 @default.
- W4387514059 hasConcept C2781020372 @default.
- W4387514059 hasConcept C2985745059 @default.
- W4387514059 hasConcept C41008148 @default.
- W4387514059 hasConcept C81860439 @default.
- W4387514059 hasConcept C86803240 @default.
- W4387514059 hasConcept C87717796 @default.
- W4387514059 hasConceptScore W4387514059C111919701 @default.
- W4387514059 hasConceptScore W4387514059C119857082 @default.
- W4387514059 hasConceptScore W4387514059C121099081 @default.
- W4387514059 hasConceptScore W4387514059C12267149 @default.
- W4387514059 hasConceptScore W4387514059C127413603 @default.
- W4387514059 hasConceptScore W4387514059C149635348 @default.
- W4387514059 hasConceptScore W4387514059C151730666 @default.
- W4387514059 hasConceptScore W4387514059C154945302 @default.
- W4387514059 hasConceptScore W4387514059C169258074 @default.
- W4387514059 hasConceptScore W4387514059C177264268 @default.
- W4387514059 hasConceptScore W4387514059C199360897 @default.
- W4387514059 hasConceptScore W4387514059C2779343474 @default.
- W4387514059 hasConceptScore W4387514059C2781020372 @default.
- W4387514059 hasConceptScore W4387514059C2985745059 @default.
- W4387514059 hasConceptScore W4387514059C41008148 @default.
- W4387514059 hasConceptScore W4387514059C81860439 @default.
- W4387514059 hasConceptScore W4387514059C86803240 @default.
- W4387514059 hasConceptScore W4387514059C87717796 @default.
- W4387514059 hasLocation W43875140591 @default.
- W4387514059 hasOpenAccess W4387514059 @default.
- W4387514059 hasPrimaryLocation W43875140591 @default.
- W4387514059 hasRelatedWork W2004826645 @default.
- W4387514059 hasRelatedWork W2542830164 @default.
- W4387514059 hasRelatedWork W2753725918 @default.
- W4387514059 hasRelatedWork W2955796858 @default.
- W4387514059 hasRelatedWork W3135818052 @default.
- W4387514059 hasRelatedWork W4200112873 @default.
- W4387514059 hasRelatedWork W4224941037 @default.
- W4387514059 hasRelatedWork W4237332714 @default.
- W4387514059 hasRelatedWork W4313320040 @default.