Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387516601> ?p ?o ?g. }
- W4387516601 abstract "Purpose The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production planning problem when a manufacturer can observe historical demand data with high-dimensional mixed-frequency features, which provides fine-grained information. Design/methodology/approach In this study, a two-step data-driven optimization model is proposed to examine production planning with the exploitation of mixed-frequency demand data is proposed. First, an Unrestricted MIxed DAta Sampling approach is proposed, which imposes Group LASSO Penalty (GP-U-MIDAS). The use of high frequency of massive demand information is analytically justified to significantly improve the predictive ability without sacrificing goodness-of-fit. Then, integrated with the GP-U-MIDAS approach, the authors develop a multiperiod production planning model with a rolling cycle. The performance is evaluated by forecasting outcomes, production planning decisions, service levels and total cost. Findings Numerical results show that the key variables influencing market demand can be completely recognized through the GP-U-MIDAS approach; in particular, the selected accuracy of crucial features exceeds 92%. Furthermore, the proposed approach performs well regarding both in-sample fitting and out-of-sample forecasting throughout most of the horizons. Taking the total cost and service level obtained under the actual demand as the benchmark, the mean values of both the service level and total cost differences are reduced. The mean deviations of the service level and total cost are reduced to less than 2.4%. This indicates that when faced with fluctuating demand, the manufacturer can adopt the proposed model to effectively manage total costs and experience an enhanced service level. Originality/value Compared with previous studies, the authors develop a two-step data-driven optimization model by directly incorporating a potentially large number of features; the model can help manufacturers effectively identify the key features of market demand, improve the accuracy of demand estimations and make informed production decisions. Moreover, demand forecasting and optimal production decisions behave robustly with shifting demand and different cost structures, which can provide manufacturers an excellent method for solving production planning problems under demand uncertainty." @default.
- W4387516601 created "2023-10-12" @default.
- W4387516601 creator A5019491092 @default.
- W4387516601 creator A5053249974 @default.
- W4387516601 creator A5053552722 @default.
- W4387516601 creator A5089662510 @default.
- W4387516601 date "2023-10-12" @default.
- W4387516601 modified "2023-10-12" @default.
- W4387516601 title "Data-driven optimization for production planning with multiple demand features" @default.
- W4387516601 cites W1979012175 @default.
- W4387516601 cites W1980461040 @default.
- W4387516601 cites W1988277750 @default.
- W4387516601 cites W1992595841 @default.
- W4387516601 cites W2033468116 @default.
- W4387516601 cites W2042949999 @default.
- W4387516601 cites W2055311466 @default.
- W4387516601 cites W2072824059 @default.
- W4387516601 cites W2137286633 @default.
- W4387516601 cites W2139503558 @default.
- W4387516601 cites W2168211193 @default.
- W4387516601 cites W2207756506 @default.
- W4387516601 cites W2328452803 @default.
- W4387516601 cites W2606034171 @default.
- W4387516601 cites W2776611433 @default.
- W4387516601 cites W2778911205 @default.
- W4387516601 cites W2811242098 @default.
- W4387516601 cites W2906972760 @default.
- W4387516601 cites W2938093417 @default.
- W4387516601 cites W2941721706 @default.
- W4387516601 cites W3022449092 @default.
- W4387516601 cites W3070790558 @default.
- W4387516601 cites W3121151732 @default.
- W4387516601 cites W3124158594 @default.
- W4387516601 cites W3124517884 @default.
- W4387516601 cites W3125342939 @default.
- W4387516601 cites W3183880067 @default.
- W4387516601 cites W3183920302 @default.
- W4387516601 cites W3193101633 @default.
- W4387516601 cites W4256185527 @default.
- W4387516601 cites W4286559619 @default.
- W4387516601 cites W4289779459 @default.
- W4387516601 cites W4292452361 @default.
- W4387516601 cites W4293573120 @default.
- W4387516601 cites W4321786443 @default.
- W4387516601 doi "https://doi.org/10.1108/k-04-2023-0690" @default.
- W4387516601 hasPublicationYear "2023" @default.
- W4387516601 type Work @default.
- W4387516601 citedByCount "0" @default.
- W4387516601 crossrefType "journal-article" @default.
- W4387516601 hasAuthorship W4387516601A5019491092 @default.
- W4387516601 hasAuthorship W4387516601A5053249974 @default.
- W4387516601 hasAuthorship W4387516601A5053552722 @default.
- W4387516601 hasAuthorship W4387516601A5089662510 @default.
- W4387516601 hasConcept C105795698 @default.
- W4387516601 hasConcept C126255220 @default.
- W4387516601 hasConcept C13280743 @default.
- W4387516601 hasConcept C144133560 @default.
- W4387516601 hasConcept C162324750 @default.
- W4387516601 hasConcept C162853370 @default.
- W4387516601 hasConcept C175444787 @default.
- W4387516601 hasConcept C181889124 @default.
- W4387516601 hasConcept C185592680 @default.
- W4387516601 hasConcept C185798385 @default.
- W4387516601 hasConcept C193809577 @default.
- W4387516601 hasConcept C198531522 @default.
- W4387516601 hasConcept C205649164 @default.
- W4387516601 hasConcept C2777909354 @default.
- W4387516601 hasConcept C2778348673 @default.
- W4387516601 hasConcept C2780378061 @default.
- W4387516601 hasConcept C33923547 @default.
- W4387516601 hasConcept C41008148 @default.
- W4387516601 hasConcept C42475967 @default.
- W4387516601 hasConcept C43617362 @default.
- W4387516601 hasConceptScore W4387516601C105795698 @default.
- W4387516601 hasConceptScore W4387516601C126255220 @default.
- W4387516601 hasConceptScore W4387516601C13280743 @default.
- W4387516601 hasConceptScore W4387516601C144133560 @default.
- W4387516601 hasConceptScore W4387516601C162324750 @default.
- W4387516601 hasConceptScore W4387516601C162853370 @default.
- W4387516601 hasConceptScore W4387516601C175444787 @default.
- W4387516601 hasConceptScore W4387516601C181889124 @default.
- W4387516601 hasConceptScore W4387516601C185592680 @default.
- W4387516601 hasConceptScore W4387516601C185798385 @default.
- W4387516601 hasConceptScore W4387516601C193809577 @default.
- W4387516601 hasConceptScore W4387516601C198531522 @default.
- W4387516601 hasConceptScore W4387516601C205649164 @default.
- W4387516601 hasConceptScore W4387516601C2777909354 @default.
- W4387516601 hasConceptScore W4387516601C2778348673 @default.
- W4387516601 hasConceptScore W4387516601C2780378061 @default.
- W4387516601 hasConceptScore W4387516601C33923547 @default.
- W4387516601 hasConceptScore W4387516601C41008148 @default.
- W4387516601 hasConceptScore W4387516601C42475967 @default.
- W4387516601 hasConceptScore W4387516601C43617362 @default.
- W4387516601 hasLocation W43875166011 @default.
- W4387516601 hasOpenAccess W4387516601 @default.
- W4387516601 hasPrimaryLocation W43875166011 @default.
- W4387516601 hasRelatedWork W2028665553 @default.
- W4387516601 hasRelatedWork W2086519370 @default.
- W4387516601 hasRelatedWork W2087343574 @default.
- W4387516601 hasRelatedWork W2105860728 @default.