Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387517695> ?p ?o ?g. }
- W4387517695 abstract "This study aimed to develop a deep learning (DL) algorithm that enhances the quality of a single-frame enface OCTA scan to make it comparable to 4-frame averaged scan without the need for the repeated acquisitions required for averaging.Each of the healthy eyes and eyes from diabetic subjects that were prospectively enrolled in this cross-sectional study underwent four repeated 6 × 6 mm macular scans (PLEX Elite 9000 SS-OCT), and the repeated scans of each eye were co-registered to produce 4-frame averages. This prospective dataset of original (single-frame) enface scans and their corresponding averaged scans was divided into a training dataset and a validation dataset. In the training dataset, a DL algorithm (named pseudoaveraging) was trained using original scans as input and 4-frame averages as target. In the validation dataset, the pseudoaveraging algorithm was applied to single-frame scans to produce pseudoaveraged scans, and the single-frame and its corresponding averaged and pseudoaveraged scans were all qualitatively compared. In a separate retrospectively collected dataset of single-frame scans from eyes of diabetic subjects, the DL algorithm was applied, and the produced pseudoaveraged scan was qualitatively compared against its corresponding original.This study included 39 eyes that comprised the prospective dataset (split into 5 eyes for training and 34 eyes for validating the DL algorithm), and 105 eyes that comprised the retrospective test dataset. Of the total 144 study eyes, 58% had any level of diabetic retinopathy (with and without diabetic macular edema), and the rest were from healthy eyes or eyes of diabetic subjects but without diabetic retinopathy and without macular edema. Grading results in the validation dataset showed that the pseudoaveraged enface scan ranked best in overall scan quality, background noise reduction, and visibility of microaneurysms (p < 0.05). Averaged scan ranked best for motion artifact reduction (p < 0.05). Grading results in the test dataset showed that pseudoaveraging resulted in enhanced small vessels, reduction of background noise, and motion artifact in 100%, 82%, and 98% of scans, respectively. Rates of false-positive/-negative perfusion were zero.Pseudoaveraging is a feasible DL approach to more efficiently improve enface OCTA scan quality without introducing notable image artifacts." @default.
- W4387517695 created "2023-10-12" @default.
- W4387517695 creator A5001208801 @default.
- W4387517695 creator A5003851324 @default.
- W4387517695 creator A5010101309 @default.
- W4387517695 creator A5018213798 @default.
- W4387517695 creator A5026363760 @default.
- W4387517695 creator A5030633237 @default.
- W4387517695 creator A5040580675 @default.
- W4387517695 creator A5041203717 @default.
- W4387517695 creator A5055967429 @default.
- W4387517695 creator A5064284090 @default.
- W4387517695 creator A5075022467 @default.
- W4387517695 creator A5079680227 @default.
- W4387517695 creator A5081845259 @default.
- W4387517695 creator A5082861321 @default.
- W4387517695 creator A5089147700 @default.
- W4387517695 date "2023-10-11" @default.
- W4387517695 modified "2023-10-15" @default.
- W4387517695 title "Pseudoaveraging for denoising of OCT angiography: a deep learning approach for image quality enhancement in healthy and diabetic eyes" @default.
- W4387517695 cites W1901129140 @default.
- W4387517695 cites W2317136217 @default.
- W4387517695 cites W2569147871 @default.
- W4387517695 cites W2764246834 @default.
- W4387517695 cites W2789565832 @default.
- W4387517695 cites W2806783021 @default.
- W4387517695 cites W2899792928 @default.
- W4387517695 cites W2909663027 @default.
- W4387517695 cites W2914768007 @default.
- W4387517695 cites W2964657045 @default.
- W4387517695 cites W3015500772 @default.
- W4387517695 cites W3022310508 @default.
- W4387517695 cites W3028361198 @default.
- W4387517695 cites W3032421561 @default.
- W4387517695 cites W3033458839 @default.
- W4387517695 cites W3112976132 @default.
- W4387517695 cites W3119120600 @default.
- W4387517695 cites W3127804112 @default.
- W4387517695 doi "https://doi.org/10.1186/s40942-023-00486-5" @default.
- W4387517695 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37822004" @default.
- W4387517695 hasPublicationYear "2023" @default.
- W4387517695 type Work @default.
- W4387517695 citedByCount "0" @default.
- W4387517695 crossrefType "journal-article" @default.
- W4387517695 hasAuthorship W4387517695A5001208801 @default.
- W4387517695 hasAuthorship W4387517695A5003851324 @default.
- W4387517695 hasAuthorship W4387517695A5010101309 @default.
- W4387517695 hasAuthorship W4387517695A5018213798 @default.
- W4387517695 hasAuthorship W4387517695A5026363760 @default.
- W4387517695 hasAuthorship W4387517695A5030633237 @default.
- W4387517695 hasAuthorship W4387517695A5040580675 @default.
- W4387517695 hasAuthorship W4387517695A5041203717 @default.
- W4387517695 hasAuthorship W4387517695A5055967429 @default.
- W4387517695 hasAuthorship W4387517695A5064284090 @default.
- W4387517695 hasAuthorship W4387517695A5075022467 @default.
- W4387517695 hasAuthorship W4387517695A5079680227 @default.
- W4387517695 hasAuthorship W4387517695A5081845259 @default.
- W4387517695 hasAuthorship W4387517695A5082861321 @default.
- W4387517695 hasAuthorship W4387517695A5089147700 @default.
- W4387517695 hasBestOaLocation W43875176951 @default.
- W4387517695 hasConcept C115961682 @default.
- W4387517695 hasConcept C118487528 @default.
- W4387517695 hasConcept C119767625 @default.
- W4387517695 hasConcept C126042441 @default.
- W4387517695 hasConcept C134018914 @default.
- W4387517695 hasConcept C141071460 @default.
- W4387517695 hasConcept C154945302 @default.
- W4387517695 hasConcept C188816634 @default.
- W4387517695 hasConcept C2779829184 @default.
- W4387517695 hasConcept C2985127711 @default.
- W4387517695 hasConcept C2989005 @default.
- W4387517695 hasConcept C41008148 @default.
- W4387517695 hasConcept C55020928 @default.
- W4387517695 hasConcept C555293320 @default.
- W4387517695 hasConcept C71924100 @default.
- W4387517695 hasConcept C76155785 @default.
- W4387517695 hasConceptScore W4387517695C115961682 @default.
- W4387517695 hasConceptScore W4387517695C118487528 @default.
- W4387517695 hasConceptScore W4387517695C119767625 @default.
- W4387517695 hasConceptScore W4387517695C126042441 @default.
- W4387517695 hasConceptScore W4387517695C134018914 @default.
- W4387517695 hasConceptScore W4387517695C141071460 @default.
- W4387517695 hasConceptScore W4387517695C154945302 @default.
- W4387517695 hasConceptScore W4387517695C188816634 @default.
- W4387517695 hasConceptScore W4387517695C2779829184 @default.
- W4387517695 hasConceptScore W4387517695C2985127711 @default.
- W4387517695 hasConceptScore W4387517695C2989005 @default.
- W4387517695 hasConceptScore W4387517695C41008148 @default.
- W4387517695 hasConceptScore W4387517695C55020928 @default.
- W4387517695 hasConceptScore W4387517695C555293320 @default.
- W4387517695 hasConceptScore W4387517695C71924100 @default.
- W4387517695 hasConceptScore W4387517695C76155785 @default.
- W4387517695 hasFunder F4320310048 @default.
- W4387517695 hasFunder F4320321502 @default.
- W4387517695 hasIssue "1" @default.
- W4387517695 hasLocation W43875176951 @default.
- W4387517695 hasLocation W43875176952 @default.
- W4387517695 hasOpenAccess W4387517695 @default.
- W4387517695 hasPrimaryLocation W43875176951 @default.
- W4387517695 hasRelatedWork W1175912066 @default.