Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387520780> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387520780 endingPage "2938" @default.
- W4387520780 startingPage "2924" @default.
- W4387520780 abstract "This study presents a comparison of prediction performances by an artificial neural network (ANN), well-known deep convolutional neural network (D-CNN) models, and four proposed shallow convolutional neural network (S-CNN) models to forecast three key physicochemical properties (PCPs): salinity, °Brix, and moisture content of kimchi sauce (KS). The S-CNN models effectively minimized underfitting issues found in D-CNN models, predicting PCPs with a low error rate even with small image datasets. Furthermore, the ANN model using color values also allowed for competitive predictions. We used two nondestructive prediction strategies: (i) using color values with ANNs for immediate application in small-scale enterprises and (ii) using photographs as input for S-CNN models, allowing for faster and more accurate quality prediction. These results highlight the potential for image-based quality prediction in food science, possibly enhancing the efficiency and accuracy of real-time quality control. Future enhancements could incorporate additional data sources for improved predictive performance." @default.
- W4387520780 created "2023-10-12" @default.
- W4387520780 creator A5008515556 @default.
- W4387520780 creator A5028595908 @default.
- W4387520780 creator A5064056237 @default.
- W4387520780 creator A5067892905 @default.
- W4387520780 creator A5071751365 @default.
- W4387520780 creator A5075801042 @default.
- W4387520780 creator A5079174867 @default.
- W4387520780 creator A5084064800 @default.
- W4387520780 creator A5090482069 @default.
- W4387520780 date "2023-10-11" @default.
- W4387520780 modified "2023-10-12" @default.
- W4387520780 title "Nondestructive prediction of physicochemical properties of kimchi sauce with artificial and convolutional neural networks" @default.
- W4387520780 cites W2003172488 @default.
- W4387520780 cites W2016477952 @default.
- W4387520780 cites W2023962114 @default.
- W4387520780 cites W2034024867 @default.
- W4387520780 cites W2051682118 @default.
- W4387520780 cites W2061845715 @default.
- W4387520780 cites W2064820716 @default.
- W4387520780 cites W2102636708 @default.
- W4387520780 cites W2147474622 @default.
- W4387520780 cites W2181098489 @default.
- W4387520780 cites W2487770199 @default.
- W4387520780 cites W2526566948 @default.
- W4387520780 cites W2561492200 @default.
- W4387520780 cites W2909414115 @default.
- W4387520780 cites W2995286013 @default.
- W4387520780 cites W3081692415 @default.
- W4387520780 cites W3091460486 @default.
- W4387520780 cites W3122909153 @default.
- W4387520780 cites W3194730353 @default.
- W4387520780 cites W3204164233 @default.
- W4387520780 cites W3208153866 @default.
- W4387520780 cites W4200470058 @default.
- W4387520780 cites W4210285649 @default.
- W4387520780 cites W4289262431 @default.
- W4387520780 cites W4308885074 @default.
- W4387520780 cites W4327617809 @default.
- W4387520780 cites W4381095406 @default.
- W4387520780 doi "https://doi.org/10.1080/10942912.2023.2250577" @default.
- W4387520780 hasPublicationYear "2023" @default.
- W4387520780 type Work @default.
- W4387520780 citedByCount "0" @default.
- W4387520780 crossrefType "journal-article" @default.
- W4387520780 hasAuthorship W4387520780A5008515556 @default.
- W4387520780 hasAuthorship W4387520780A5028595908 @default.
- W4387520780 hasAuthorship W4387520780A5064056237 @default.
- W4387520780 hasAuthorship W4387520780A5067892905 @default.
- W4387520780 hasAuthorship W4387520780A5071751365 @default.
- W4387520780 hasAuthorship W4387520780A5075801042 @default.
- W4387520780 hasAuthorship W4387520780A5079174867 @default.
- W4387520780 hasAuthorship W4387520780A5084064800 @default.
- W4387520780 hasAuthorship W4387520780A5090482069 @default.
- W4387520780 hasBestOaLocation W43875207801 @default.
- W4387520780 hasConcept C119857082 @default.
- W4387520780 hasConcept C153180895 @default.
- W4387520780 hasConcept C154945302 @default.
- W4387520780 hasConcept C41008148 @default.
- W4387520780 hasConcept C45804977 @default.
- W4387520780 hasConcept C50644808 @default.
- W4387520780 hasConcept C81363708 @default.
- W4387520780 hasConceptScore W4387520780C119857082 @default.
- W4387520780 hasConceptScore W4387520780C153180895 @default.
- W4387520780 hasConceptScore W4387520780C154945302 @default.
- W4387520780 hasConceptScore W4387520780C41008148 @default.
- W4387520780 hasConceptScore W4387520780C45804977 @default.
- W4387520780 hasConceptScore W4387520780C50644808 @default.
- W4387520780 hasConceptScore W4387520780C81363708 @default.
- W4387520780 hasFunder F4320322033 @default.
- W4387520780 hasFunder F4320322117 @default.
- W4387520780 hasIssue "2" @default.
- W4387520780 hasLocation W43875207801 @default.
- W4387520780 hasOpenAccess W4387520780 @default.
- W4387520780 hasPrimaryLocation W43875207801 @default.
- W4387520780 hasRelatedWork W2811106690 @default.
- W4387520780 hasRelatedWork W2936819511 @default.
- W4387520780 hasRelatedWork W3043432080 @default.
- W4387520780 hasRelatedWork W3106528173 @default.
- W4387520780 hasRelatedWork W4239306820 @default.
- W4387520780 hasRelatedWork W4293226380 @default.
- W4387520780 hasRelatedWork W4313906399 @default.
- W4387520780 hasRelatedWork W4317600379 @default.
- W4387520780 hasRelatedWork W4321444604 @default.
- W4387520780 hasRelatedWork W4321487865 @default.
- W4387520780 hasVolume "26" @default.
- W4387520780 isParatext "false" @default.
- W4387520780 isRetracted "false" @default.
- W4387520780 workType "article" @default.