Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387521010> ?p ?o ?g. }
- W4387521010 endingPage "11" @default.
- W4387521010 startingPage "1" @default.
- W4387521010 abstract "ABSTRACTMachine learning methods have been extensively employed to predict COVID-19 using chest X-ray images in numerous studies. However, a machine learning model must exhibit robustness and provide reliable predictions for diverse populations, beyond those used in its training data, to be truly valuable. Unfortunately, the assessment of model generalisability is frequently overlooked in current literature. In this study, we investigate the generalisability of three classification models – ResNet50v2, MobileNetv2, and Swin Transformer – for predicting COVID-19 using chest X-ray images. We adopt three concurrent approaches for evaluation: the internal-and-external validation procedure, lung region cropping, and image enhancement. The results show that the combined approaches allow deep models to achieve similar internal and external generalisation capability.KEYWORDS: COVID-19X-raymachine learning Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1. https://github.com/dirtmaxim/lungs-finder2. https://keras.io/examples/vision/swin_transformers/3. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge4. https://github.com/agchung/Actualmed-COVID-chestxray-dataset5. Figure 1-COVID-chestxray-datasethttps://github.com/agchung/Figure 1-COVID-chestxray-datasetAdditional informationFundingThe present work is the result of the Research and Development (R&D) project 001/2020, signed with Federal University of Amazonas and FAEPI, Brazil, which has funding from Samsung, using resources from the Informatics Law for the Western Amazon (Federal Law no 8.387/1991), and its disclosure is in accordance with article 39 of Decree No. 10.521/2020.Notes on contributorsNatalia de Sousa FreireNatalia de Sousa Freire is currently a Software Engineering student at the Federal University of Amazonas (UFAM). His main research interests include the areas of machine learning and computer vision.Pedro Paulo de Souza LeoPedro Paulo de Souza Leão obtained his Bachelor's degree in Software Engineering from the Federal University of Amazonas (Brazil) in 2023. His main research interest is machine learning.Leonardo Albuquerque TiagoLeonardo de Albuquerque Tiago is currently pursuing a Bachelor's degree in Software Engineering at Federal University of Amazonas (Brazil). His main research interests are machine learning and software testing.Alberto de Almeida Campos GonalvesAlberto de Almeida Campos Gonçalves received his B.S. degree in Computer Science from the Federal University of Amazonas in 2022. His research interests include the areas of machine learning and computer vision.Rafael Albuquerque PintoRafael Albuquerque Pinto received his B.S. degree in Computer Science from the Federal University of Roraima (UFRR) in 2017 and his M.Sc. degree in Informatics from the Federal University of Amazonas (UFAM) in 2022. He is currently pursuing a Ph.D. degree in Informatics at UFAM, focusing his research on biosignals using machine learning techniques.Eulanda Miranda dos SantosEulanda Miranda dos Santos is an Associate Professor in the Institute of Computing (IComp) of the Federal University of Amazonas. She received a B.Sc. degree in Informatics from Federal University of Para (Brazil), a M.Sc. degree in Informatics from Federal University of Paraiba (Brazil) and a Ph.D. degree in Engineering from École de Technologie Supérieure, University of Quebec (Canada) in 1999, 2002 and 2008, respectively. Her research interests include pattern recognition, machine learning and computer vision.Eduardo SoutoEduardo Souto received the Ph.D. degree in computer science from the Federal University of Pernambuco (UFPE), Recife, Brazil, in 2007. He is currently an Associate Professor with the Institute of Computing, Federal University of Amazonas (UFAM). He is also the head of the Emerging Technologies and System Security (ETSS) Research Group. His research interests include the areas of applied machine learning, internet of things, and network security." @default.
- W4387521010 created "2023-10-12" @default.
- W4387521010 creator A5001152954 @default.
- W4387521010 creator A5003707540 @default.
- W4387521010 creator A5027698019 @default.
- W4387521010 creator A5029548136 @default.
- W4387521010 creator A5033286636 @default.
- W4387521010 creator A5063975149 @default.
- W4387521010 creator A5093041374 @default.
- W4387521010 date "2023-10-11" @default.
- W4387521010 modified "2023-10-12" @default.
- W4387521010 title "Analysis of generalizability on predicting COVID-19 from chest X-ray images using pre-trained deep models" @default.
- W4387521010 cites W2302255633 @default.
- W4387521010 cites W2962858109 @default.
- W4387521010 cites W3008627141 @default.
- W4387521010 cites W3015984951 @default.
- W4387521010 cites W3016970897 @default.
- W4387521010 cites W3045464882 @default.
- W4387521010 cites W3101156210 @default.
- W4387521010 cites W3104951425 @default.
- W4387521010 cites W3105081694 @default.
- W4387521010 cites W3120506007 @default.
- W4387521010 cites W3135057764 @default.
- W4387521010 cites W3136933888 @default.
- W4387521010 cites W3138516171 @default.
- W4387521010 cites W3139111558 @default.
- W4387521010 cites W3163878355 @default.
- W4387521010 cites W3171306028 @default.
- W4387521010 cites W3171760746 @default.
- W4387521010 cites W3171849353 @default.
- W4387521010 cites W3194778829 @default.
- W4387521010 cites W3198421214 @default.
- W4387521010 cites W3198507683 @default.
- W4387521010 cites W3200595640 @default.
- W4387521010 cites W4200331719 @default.
- W4387521010 cites W4221104716 @default.
- W4387521010 cites W4225639061 @default.
- W4387521010 cites W4312983409 @default.
- W4387521010 doi "https://doi.org/10.1080/21681163.2023.2264408" @default.
- W4387521010 hasPublicationYear "2023" @default.
- W4387521010 type Work @default.
- W4387521010 citedByCount "0" @default.
- W4387521010 crossrefType "journal-article" @default.
- W4387521010 hasAuthorship W4387521010A5001152954 @default.
- W4387521010 hasAuthorship W4387521010A5003707540 @default.
- W4387521010 hasAuthorship W4387521010A5027698019 @default.
- W4387521010 hasAuthorship W4387521010A5029548136 @default.
- W4387521010 hasAuthorship W4387521010A5033286636 @default.
- W4387521010 hasAuthorship W4387521010A5063975149 @default.
- W4387521010 hasAuthorship W4387521010A5093041374 @default.
- W4387521010 hasConcept C104317684 @default.
- W4387521010 hasConcept C105795698 @default.
- W4387521010 hasConcept C108583219 @default.
- W4387521010 hasConcept C119857082 @default.
- W4387521010 hasConcept C142724271 @default.
- W4387521010 hasConcept C154945302 @default.
- W4387521010 hasConcept C185592680 @default.
- W4387521010 hasConcept C2522767166 @default.
- W4387521010 hasConcept C27158222 @default.
- W4387521010 hasConcept C2779134260 @default.
- W4387521010 hasConcept C3008058167 @default.
- W4387521010 hasConcept C33923547 @default.
- W4387521010 hasConcept C41008148 @default.
- W4387521010 hasConcept C50644808 @default.
- W4387521010 hasConcept C524204448 @default.
- W4387521010 hasConcept C55493867 @default.
- W4387521010 hasConcept C63479239 @default.
- W4387521010 hasConcept C71924100 @default.
- W4387521010 hasConceptScore W4387521010C104317684 @default.
- W4387521010 hasConceptScore W4387521010C105795698 @default.
- W4387521010 hasConceptScore W4387521010C108583219 @default.
- W4387521010 hasConceptScore W4387521010C119857082 @default.
- W4387521010 hasConceptScore W4387521010C142724271 @default.
- W4387521010 hasConceptScore W4387521010C154945302 @default.
- W4387521010 hasConceptScore W4387521010C185592680 @default.
- W4387521010 hasConceptScore W4387521010C2522767166 @default.
- W4387521010 hasConceptScore W4387521010C27158222 @default.
- W4387521010 hasConceptScore W4387521010C2779134260 @default.
- W4387521010 hasConceptScore W4387521010C3008058167 @default.
- W4387521010 hasConceptScore W4387521010C33923547 @default.
- W4387521010 hasConceptScore W4387521010C41008148 @default.
- W4387521010 hasConceptScore W4387521010C50644808 @default.
- W4387521010 hasConceptScore W4387521010C524204448 @default.
- W4387521010 hasConceptScore W4387521010C55493867 @default.
- W4387521010 hasConceptScore W4387521010C63479239 @default.
- W4387521010 hasConceptScore W4387521010C71924100 @default.
- W4387521010 hasLocation W43875210101 @default.
- W4387521010 hasOpenAccess W4387521010 @default.
- W4387521010 hasPrimaryLocation W43875210101 @default.
- W4387521010 hasRelatedWork W1549477351 @default.
- W4387521010 hasRelatedWork W1958015814 @default.
- W4387521010 hasRelatedWork W2008630378 @default.
- W4387521010 hasRelatedWork W2015341305 @default.
- W4387521010 hasRelatedWork W2035068594 @default.
- W4387521010 hasRelatedWork W2059783833 @default.
- W4387521010 hasRelatedWork W2118717649 @default.
- W4387521010 hasRelatedWork W2413243053 @default.
- W4387521010 hasRelatedWork W410723623 @default.