Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387522019> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387522019 endingPage "104590" @default.
- W4387522019 startingPage "104590" @default.
- W4387522019 abstract "This study employs machine learning models to explore the predictive power of 10 categories of financial indicators on the Chinese stock market. We examine whether influential financial indicators fall into distinct categories of greater importance for predicting stock returns. The findings demonstrate that financial indicators across 10 categories hold predictive power for stock returns on Chinese market, with neural network models outperforming linear ones. Profitability and growth indicators are among the most influential indicators. This study contributes to a better understanding of financial indicators and demonstrates the effectiveness of machine learning models in the Chinese stock market." @default.
- W4387522019 created "2023-10-12" @default.
- W4387522019 creator A5024715933 @default.
- W4387522019 creator A5026911437 @default.
- W4387522019 creator A5030021681 @default.
- W4387522019 creator A5036780432 @default.
- W4387522019 creator A5062346744 @default.
- W4387522019 date "2023-10-01" @default.
- W4387522019 modified "2023-10-12" @default.
- W4387522019 title "Financial indicators analysis by machine learning: evidence from Chinese stock market" @default.
- W4387522019 cites W1969128245 @default.
- W4387522019 cites W1978538204 @default.
- W4387522019 cites W1994228146 @default.
- W4387522019 cites W2002882686 @default.
- W4387522019 cites W2061814457 @default.
- W4387522019 cites W2136478625 @default.
- W4387522019 cites W2148965563 @default.
- W4387522019 cites W2346955694 @default.
- W4387522019 cites W2564413852 @default.
- W4387522019 cites W2799643291 @default.
- W4387522019 cites W2941626576 @default.
- W4387522019 cites W3121968018 @default.
- W4387522019 cites W3126119978 @default.
- W4387522019 cites W3196503391 @default.
- W4387522019 cites W4205539948 @default.
- W4387522019 cites W4237239309 @default.
- W4387522019 cites W4312073436 @default.
- W4387522019 doi "https://doi.org/10.1016/j.frl.2023.104590" @default.
- W4387522019 hasPublicationYear "2023" @default.
- W4387522019 type Work @default.
- W4387522019 citedByCount "0" @default.
- W4387522019 crossrefType "journal-article" @default.
- W4387522019 hasAuthorship W4387522019A5024715933 @default.
- W4387522019 hasAuthorship W4387522019A5026911437 @default.
- W4387522019 hasAuthorship W4387522019A5030021681 @default.
- W4387522019 hasAuthorship W4387522019A5036780432 @default.
- W4387522019 hasAuthorship W4387522019A5062346744 @default.
- W4387522019 hasConcept C10138342 @default.
- W4387522019 hasConcept C106159729 @default.
- W4387522019 hasConcept C111472728 @default.
- W4387522019 hasConcept C127413603 @default.
- W4387522019 hasConcept C129361004 @default.
- W4387522019 hasConcept C138885662 @default.
- W4387522019 hasConcept C144133560 @default.
- W4387522019 hasConcept C149782125 @default.
- W4387522019 hasConcept C151730666 @default.
- W4387522019 hasConcept C162324750 @default.
- W4387522019 hasConcept C19244329 @default.
- W4387522019 hasConcept C204036174 @default.
- W4387522019 hasConcept C2778136018 @default.
- W4387522019 hasConcept C2780299701 @default.
- W4387522019 hasConcept C2780762169 @default.
- W4387522019 hasConcept C78519656 @default.
- W4387522019 hasConcept C86803240 @default.
- W4387522019 hasConceptScore W4387522019C10138342 @default.
- W4387522019 hasConceptScore W4387522019C106159729 @default.
- W4387522019 hasConceptScore W4387522019C111472728 @default.
- W4387522019 hasConceptScore W4387522019C127413603 @default.
- W4387522019 hasConceptScore W4387522019C129361004 @default.
- W4387522019 hasConceptScore W4387522019C138885662 @default.
- W4387522019 hasConceptScore W4387522019C144133560 @default.
- W4387522019 hasConceptScore W4387522019C149782125 @default.
- W4387522019 hasConceptScore W4387522019C151730666 @default.
- W4387522019 hasConceptScore W4387522019C162324750 @default.
- W4387522019 hasConceptScore W4387522019C19244329 @default.
- W4387522019 hasConceptScore W4387522019C204036174 @default.
- W4387522019 hasConceptScore W4387522019C2778136018 @default.
- W4387522019 hasConceptScore W4387522019C2780299701 @default.
- W4387522019 hasConceptScore W4387522019C2780762169 @default.
- W4387522019 hasConceptScore W4387522019C78519656 @default.
- W4387522019 hasConceptScore W4387522019C86803240 @default.
- W4387522019 hasLocation W43875220191 @default.
- W4387522019 hasOpenAccess W4387522019 @default.
- W4387522019 hasPrimaryLocation W43875220191 @default.
- W4387522019 hasRelatedWork W2066844180 @default.
- W4387522019 hasRelatedWork W2370669686 @default.
- W4387522019 hasRelatedWork W25115902 @default.
- W4387522019 hasRelatedWork W2645942849 @default.
- W4387522019 hasRelatedWork W2756649665 @default.
- W4387522019 hasRelatedWork W3009375958 @default.
- W4387522019 hasRelatedWork W3125099825 @default.
- W4387522019 hasRelatedWork W3192619919 @default.
- W4387522019 hasRelatedWork W4206056187 @default.
- W4387522019 hasRelatedWork W4285147705 @default.
- W4387522019 isParatext "false" @default.
- W4387522019 isRetracted "false" @default.
- W4387522019 workType "article" @default.