Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387524059> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4387524059 endingPage "110896" @default.
- W4387524059 startingPage "110896" @default.
- W4387524059 abstract "Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models." @default.
- W4387524059 created "2023-10-12" @default.
- W4387524059 creator A5016691476 @default.
- W4387524059 creator A5042048551 @default.
- W4387524059 creator A5061105814 @default.
- W4387524059 date "2023-11-01" @default.
- W4387524059 modified "2023-10-18" @default.
- W4387524059 title "Emotion quantification and classification using the neutrosophic approach to deep learning" @default.
- W4387524059 cites W2053824000 @default.
- W4387524059 cites W2153696615 @default.
- W4387524059 cites W2493916176 @default.
- W4387524059 cites W2924164060 @default.
- W4387524059 cites W2958966892 @default.
- W4387524059 cites W2975213864 @default.
- W4387524059 cites W2995237919 @default.
- W4387524059 cites W3009186949 @default.
- W4387524059 cites W3109128137 @default.
- W4387524059 cites W3136003135 @default.
- W4387524059 cites W3158281191 @default.
- W4387524059 cites W3185667514 @default.
- W4387524059 cites W3211199416 @default.
- W4387524059 cites W4220875053 @default.
- W4387524059 cites W4221057175 @default.
- W4387524059 cites W4285122644 @default.
- W4387524059 cites W4304957738 @default.
- W4387524059 cites W591434607 @default.
- W4387524059 doi "https://doi.org/10.1016/j.asoc.2023.110896" @default.
- W4387524059 hasPublicationYear "2023" @default.
- W4387524059 type Work @default.
- W4387524059 citedByCount "0" @default.
- W4387524059 crossrefType "journal-article" @default.
- W4387524059 hasAuthorship W4387524059A5016691476 @default.
- W4387524059 hasAuthorship W4387524059A5042048551 @default.
- W4387524059 hasAuthorship W4387524059A5061105814 @default.
- W4387524059 hasBestOaLocation W43875240591 @default.
- W4387524059 hasConcept C118552586 @default.
- W4387524059 hasConcept C119857082 @default.
- W4387524059 hasConcept C154945302 @default.
- W4387524059 hasConcept C15744967 @default.
- W4387524059 hasConcept C162324750 @default.
- W4387524059 hasConcept C17744445 @default.
- W4387524059 hasConcept C187736073 @default.
- W4387524059 hasConcept C199539241 @default.
- W4387524059 hasConcept C204321447 @default.
- W4387524059 hasConcept C206310091 @default.
- W4387524059 hasConcept C2776359362 @default.
- W4387524059 hasConcept C2779302386 @default.
- W4387524059 hasConcept C2780451532 @default.
- W4387524059 hasConcept C41008148 @default.
- W4387524059 hasConcept C66402592 @default.
- W4387524059 hasConcept C94625758 @default.
- W4387524059 hasConceptScore W4387524059C118552586 @default.
- W4387524059 hasConceptScore W4387524059C119857082 @default.
- W4387524059 hasConceptScore W4387524059C154945302 @default.
- W4387524059 hasConceptScore W4387524059C15744967 @default.
- W4387524059 hasConceptScore W4387524059C162324750 @default.
- W4387524059 hasConceptScore W4387524059C17744445 @default.
- W4387524059 hasConceptScore W4387524059C187736073 @default.
- W4387524059 hasConceptScore W4387524059C199539241 @default.
- W4387524059 hasConceptScore W4387524059C204321447 @default.
- W4387524059 hasConceptScore W4387524059C206310091 @default.
- W4387524059 hasConceptScore W4387524059C2776359362 @default.
- W4387524059 hasConceptScore W4387524059C2779302386 @default.
- W4387524059 hasConceptScore W4387524059C2780451532 @default.
- W4387524059 hasConceptScore W4387524059C41008148 @default.
- W4387524059 hasConceptScore W4387524059C66402592 @default.
- W4387524059 hasConceptScore W4387524059C94625758 @default.
- W4387524059 hasLocation W43875240591 @default.
- W4387524059 hasOpenAccess W4387524059 @default.
- W4387524059 hasPrimaryLocation W43875240591 @default.
- W4387524059 hasRelatedWork W2030507284 @default.
- W4387524059 hasRelatedWork W2060991067 @default.
- W4387524059 hasRelatedWork W2087919909 @default.
- W4387524059 hasRelatedWork W2119598471 @default.
- W4387524059 hasRelatedWork W2334836877 @default.
- W4387524059 hasRelatedWork W2411302867 @default.
- W4387524059 hasRelatedWork W2471312190 @default.
- W4387524059 hasRelatedWork W2531159956 @default.
- W4387524059 hasRelatedWork W3179181153 @default.
- W4387524059 hasRelatedWork W4299391760 @default.
- W4387524059 hasVolume "148" @default.
- W4387524059 isParatext "false" @default.
- W4387524059 isRetracted "false" @default.
- W4387524059 workType "article" @default.