Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387527107> ?p ?o ?g. }
- W4387527107 endingPage "110833" @default.
- W4387527107 startingPage "110833" @default.
- W4387527107 abstract "Machinery condition prognosis systems use long-term historical data to predict the remaining useful life (RUL). One of the critical steps to reach this purpose is to segment long-term data into two or several degradation stages (healthy, unhealthy, critical stage). Finding a changing point between stages may be a crucial preliminary task for further prediction of degradation process. However, finding the accurate partition into two or more stages is a challenging task in actual application when noise inherent in the observed process exhibits non-Gaussian characteristics. In this paper, a framework for data-driven segmentation is presented for prognosis of machinery long-term data in presence of heavy-tailed distributed noise with finite variance. It is assumed that three different stages are inherent in degradation process and each segment of data follows a specific trend (constant, linear, exponential or polynomial). At first, data is divided into three parts. Trend functions are fitted to the data by using robust regression method, and cumulative error is calculated. This process is done iteratively for all possible partitions into three intervals to find the segmentation which minimizes the error. The framework has been tested via empirical analysis of estimators of the changing points obtained in Monte Carlo simulations. Also, discussed approaches are applied to the real data. In such measurement, data that are commonly available (in condition monitoring systems) is aggregated from the raw signal and sampled at long intervals. Finally, effectiveness of the segmentation results is assessed by comparing them with envelope frequency analysis of raw signal to confirm the fact that detected changing points coincide with start time of the fault in the machine or not." @default.
- W4387527107 created "2023-10-12" @default.
- W4387527107 creator A5027180966 @default.
- W4387527107 creator A5035567306 @default.
- W4387527107 creator A5038658469 @default.
- W4387527107 creator A5073892482 @default.
- W4387527107 creator A5091964212 @default.
- W4387527107 date "2023-12-01" @default.
- W4387527107 modified "2023-10-12" @default.
- W4387527107 title "Data-driven segmentation of long term condition monitoring data in the presence of heavy-tailed distributed noise with finite-variance" @default.
- W4387527107 cites W1578870273 @default.
- W4387527107 cites W1971673631 @default.
- W4387527107 cites W1973665104 @default.
- W4387527107 cites W1975463304 @default.
- W4387527107 cites W1976558158 @default.
- W4387527107 cites W1991142126 @default.
- W4387527107 cites W1993880634 @default.
- W4387527107 cites W1995430360 @default.
- W4387527107 cites W2004694841 @default.
- W4387527107 cites W2005289489 @default.
- W4387527107 cites W2019505419 @default.
- W4387527107 cites W2022706486 @default.
- W4387527107 cites W2032618530 @default.
- W4387527107 cites W2042251154 @default.
- W4387527107 cites W2043795619 @default.
- W4387527107 cites W2045487031 @default.
- W4387527107 cites W2050211799 @default.
- W4387527107 cites W2060512336 @default.
- W4387527107 cites W2085423311 @default.
- W4387527107 cites W2092023402 @default.
- W4387527107 cites W2152074354 @default.
- W4387527107 cites W2175209363 @default.
- W4387527107 cites W2230957558 @default.
- W4387527107 cites W2281604363 @default.
- W4387527107 cites W2319025975 @default.
- W4387527107 cites W2463813940 @default.
- W4387527107 cites W2473294140 @default.
- W4387527107 cites W2515822248 @default.
- W4387527107 cites W2547767416 @default.
- W4387527107 cites W2575828067 @default.
- W4387527107 cites W2773549135 @default.
- W4387527107 cites W2791632718 @default.
- W4387527107 cites W2892723343 @default.
- W4387527107 cites W2903743164 @default.
- W4387527107 cites W2904560462 @default.
- W4387527107 cites W2905047649 @default.
- W4387527107 cites W2958041981 @default.
- W4387527107 cites W2969771510 @default.
- W4387527107 cites W2997825250 @default.
- W4387527107 cites W3006152912 @default.
- W4387527107 cites W3025870744 @default.
- W4387527107 cites W3027811431 @default.
- W4387527107 cites W3081915921 @default.
- W4387527107 cites W3090381681 @default.
- W4387527107 cites W3101931750 @default.
- W4387527107 cites W3134954717 @default.
- W4387527107 cites W3170305376 @default.
- W4387527107 cites W3187285017 @default.
- W4387527107 cites W3201907027 @default.
- W4387527107 cites W4200608060 @default.
- W4387527107 cites W4206756698 @default.
- W4387527107 cites W4283794518 @default.
- W4387527107 cites W4292325346 @default.
- W4387527107 cites W4380354145 @default.
- W4387527107 cites W4385612960 @default.
- W4387527107 doi "https://doi.org/10.1016/j.ymssp.2023.110833" @default.
- W4387527107 hasPublicationYear "2023" @default.
- W4387527107 type Work @default.
- W4387527107 citedByCount "0" @default.
- W4387527107 crossrefType "journal-article" @default.
- W4387527107 hasAuthorship W4387527107A5027180966 @default.
- W4387527107 hasAuthorship W4387527107A5035567306 @default.
- W4387527107 hasAuthorship W4387527107A5038658469 @default.
- W4387527107 hasAuthorship W4387527107A5073892482 @default.
- W4387527107 hasAuthorship W4387527107A5091964212 @default.
- W4387527107 hasBestOaLocation W43875271071 @default.
- W4387527107 hasConcept C105795698 @default.
- W4387527107 hasConcept C11413529 @default.
- W4387527107 hasConcept C115961682 @default.
- W4387527107 hasConcept C121332964 @default.
- W4387527107 hasConcept C154945302 @default.
- W4387527107 hasConcept C185429906 @default.
- W4387527107 hasConcept C21080849 @default.
- W4387527107 hasConcept C33923547 @default.
- W4387527107 hasConcept C41008148 @default.
- W4387527107 hasConcept C61797465 @default.
- W4387527107 hasConcept C62520636 @default.
- W4387527107 hasConcept C89600930 @default.
- W4387527107 hasConcept C99498987 @default.
- W4387527107 hasConceptScore W4387527107C105795698 @default.
- W4387527107 hasConceptScore W4387527107C11413529 @default.
- W4387527107 hasConceptScore W4387527107C115961682 @default.
- W4387527107 hasConceptScore W4387527107C121332964 @default.
- W4387527107 hasConceptScore W4387527107C154945302 @default.
- W4387527107 hasConceptScore W4387527107C185429906 @default.
- W4387527107 hasConceptScore W4387527107C21080849 @default.
- W4387527107 hasConceptScore W4387527107C33923547 @default.
- W4387527107 hasConceptScore W4387527107C41008148 @default.