Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387528963> ?p ?o ?g. }
- W4387528963 endingPage "3540" @default.
- W4387528963 startingPage "3540" @default.
- W4387528963 abstract "Groundwater is one of the water resources used to preserve natural water sources for drinking, irrigation, and several other purposes, especially in industrial applications. Human activities related to industry and agriculture result in groundwater contamination. Therefore, investigating water quality is essential for drinking and irrigation purposes. In this work, the water quality index (WQI) was used to identify the suitability of water for drinking and irrigation. However, generating an accurate WQI requires much time, as errors may be made during the sub-index calculations. Hence, an artificial intelligence (AI) prediction model was built to reduce both time and errors. Eighty data samples were collected from Sakrand, a city in the province of Sindh, to investigate the area’s WQI. The classification learners were used with raw data samples and the normalized data to select the best classifier among the following decision trees: support vector machine (SVM), k-nearest neighbors (K-NN), ensemble tree (ET), and discrimination analysis (DA). These were included in the classification learner tool in MATLAB. The results revealed that SVM was the best raw and normalized data classifier. The prediction accuracy levels for the training data were 90.8% and 89.2% for the raw and normalized data, respectively. Meanwhile, the prediction accuracy levels for the testing data were 86.67 and 93.33% for the raw and normalized data, respectively." @default.
- W4387528963 created "2023-10-12" @default.
- W4387528963 creator A5012868167 @default.
- W4387528963 creator A5014246116 @default.
- W4387528963 creator A5032567905 @default.
- W4387528963 creator A5077423502 @default.
- W4387528963 creator A5091285252 @default.
- W4387528963 creator A5093042559 @default.
- W4387528963 date "2023-10-11" @default.
- W4387528963 modified "2023-10-12" @default.
- W4387528963 title "Machine Learning Algorithms for Predicting the Water Quality Index" @default.
- W4387528963 cites W1995455179 @default.
- W4387528963 cites W1998583854 @default.
- W4387528963 cites W2002480661 @default.
- W4387528963 cites W2044825855 @default.
- W4387528963 cites W2075738494 @default.
- W4387528963 cites W2093282096 @default.
- W4387528963 cites W2538492847 @default.
- W4387528963 cites W2749075453 @default.
- W4387528963 cites W2803178130 @default.
- W4387528963 cites W2911676047 @default.
- W4387528963 cites W2914418449 @default.
- W4387528963 cites W2969268316 @default.
- W4387528963 cites W3016792844 @default.
- W4387528963 cites W3022209765 @default.
- W4387528963 cites W3091916193 @default.
- W4387528963 cites W3105432036 @default.
- W4387528963 cites W3113372098 @default.
- W4387528963 cites W3146529069 @default.
- W4387528963 cites W3163540699 @default.
- W4387528963 cites W3205376315 @default.
- W4387528963 cites W3211647702 @default.
- W4387528963 cites W3216673595 @default.
- W4387528963 cites W3217787770 @default.
- W4387528963 cites W4200008148 @default.
- W4387528963 cites W4205268440 @default.
- W4387528963 cites W4206641218 @default.
- W4387528963 cites W4223549038 @default.
- W4387528963 cites W4225248915 @default.
- W4387528963 cites W4281850339 @default.
- W4387528963 cites W4288709920 @default.
- W4387528963 cites W4297456329 @default.
- W4387528963 cites W4297990158 @default.
- W4387528963 cites W4304689326 @default.
- W4387528963 cites W4306382254 @default.
- W4387528963 cites W4306909829 @default.
- W4387528963 cites W4307266384 @default.
- W4387528963 cites W4308454733 @default.
- W4387528963 cites W4309951994 @default.
- W4387528963 cites W4310266276 @default.
- W4387528963 cites W4311524998 @default.
- W4387528963 cites W4312224335 @default.
- W4387528963 cites W4318053845 @default.
- W4387528963 cites W4320716743 @default.
- W4387528963 cites W4321498651 @default.
- W4387528963 cites W4372319249 @default.
- W4387528963 cites W4383102240 @default.
- W4387528963 cites W4384497161 @default.
- W4387528963 cites W4385201341 @default.
- W4387528963 cites W4385994506 @default.
- W4387528963 cites W4386245908 @default.
- W4387528963 cites W4386447279 @default.
- W4387528963 cites W4387332465 @default.
- W4387528963 doi "https://doi.org/10.3390/w15203540" @default.
- W4387528963 hasPublicationYear "2023" @default.
- W4387528963 type Work @default.
- W4387528963 citedByCount "0" @default.
- W4387528963 crossrefType "journal-article" @default.
- W4387528963 hasAuthorship W4387528963A5012868167 @default.
- W4387528963 hasAuthorship W4387528963A5014246116 @default.
- W4387528963 hasAuthorship W4387528963A5032567905 @default.
- W4387528963 hasAuthorship W4387528963A5077423502 @default.
- W4387528963 hasAuthorship W4387528963A5091285252 @default.
- W4387528963 hasAuthorship W4387528963A5093042559 @default.
- W4387528963 hasBestOaLocation W43875289631 @default.
- W4387528963 hasConcept C111687972 @default.
- W4387528963 hasConcept C119857082 @default.
- W4387528963 hasConcept C12267149 @default.
- W4387528963 hasConcept C124101348 @default.
- W4387528963 hasConcept C127413603 @default.
- W4387528963 hasConcept C132964779 @default.
- W4387528963 hasConcept C136764020 @default.
- W4387528963 hasConcept C153823671 @default.
- W4387528963 hasConcept C154945302 @default.
- W4387528963 hasConcept C18903297 @default.
- W4387528963 hasConcept C199360897 @default.
- W4387528963 hasConcept C2777382242 @default.
- W4387528963 hasConcept C2780797713 @default.
- W4387528963 hasConcept C39432304 @default.
- W4387528963 hasConcept C41008148 @default.
- W4387528963 hasConcept C5481197 @default.
- W4387528963 hasConcept C84525736 @default.
- W4387528963 hasConcept C86803240 @default.
- W4387528963 hasConcept C87717796 @default.
- W4387528963 hasConcept C88463610 @default.
- W4387528963 hasConcept C95623464 @default.
- W4387528963 hasConceptScore W4387528963C111687972 @default.
- W4387528963 hasConceptScore W4387528963C119857082 @default.