Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387530823> ?p ?o ?g. }
- W4387530823 endingPage "107256" @default.
- W4387530823 startingPage "107256" @default.
- W4387530823 abstract "This paper addresses how physical knowledge can improve machine learning in process control. A data-driven tracking control framework using physics-informed neural networks (PINNs) and deep reinforcement learning (DRL) is proposed for dynamical systems, which is particularly important when iterations or repetitions of data collection experiments are limited or even not allowed. An indirect control approach is followed to accomplish this. First, a new process model is identified using PINNs trained from a model representing the experimental data collected from the plant. Then, the DRL-based control agent utilizes the identified PINN model to deliver an offline policy. We evaluate our framework for data-driven tracking control of nonisothermal CSTR, considering measurement noise and stochastic dynamics for closed-loop control. Our approach performed comparably to an NMPC without requiring a model to predict the process dynamics." @default.
- W4387530823 created "2023-10-12" @default.
- W4387530823 creator A5013542448 @default.
- W4387530823 creator A5035487516 @default.
- W4387530823 creator A5036242819 @default.
- W4387530823 creator A5042420425 @default.
- W4387530823 date "2024-01-01" @default.
- W4387530823 modified "2023-10-12" @default.
- W4387530823 title "A data-driven tracking control framework using physics-informed neural networks and deep reinforcement learning for dynamical systems" @default.
- W4387530823 cites W2041115671 @default.
- W4387530823 cites W2132267451 @default.
- W4387530823 cites W2145339207 @default.
- W4387530823 cites W2517126818 @default.
- W4387530823 cites W2766447205 @default.
- W4387530823 cites W2767766825 @default.
- W4387530823 cites W2798813326 @default.
- W4387530823 cites W2800250348 @default.
- W4387530823 cites W2842089854 @default.
- W4387530823 cites W2897661175 @default.
- W4387530823 cites W2899283552 @default.
- W4387530823 cites W2908445768 @default.
- W4387530823 cites W2909518001 @default.
- W4387530823 cites W2919115771 @default.
- W4387530823 cites W2926425062 @default.
- W4387530823 cites W2952672134 @default.
- W4387530823 cites W2955319481 @default.
- W4387530823 cites W3016895690 @default.
- W4387530823 cites W3023586494 @default.
- W4387530823 cites W3041202696 @default.
- W4387530823 cites W3043087654 @default.
- W4387530823 cites W3065151783 @default.
- W4387530823 cites W3098546160 @default.
- W4387530823 cites W3098794246 @default.
- W4387530823 cites W3117383707 @default.
- W4387530823 cites W3135266120 @default.
- W4387530823 cites W3158744177 @default.
- W4387530823 cites W3160856253 @default.
- W4387530823 cites W3194468165 @default.
- W4387530823 cites W3201579698 @default.
- W4387530823 cites W4206927419 @default.
- W4387530823 cites W4281625584 @default.
- W4387530823 cites W4308438248 @default.
- W4387530823 cites W4308469717 @default.
- W4387530823 cites W4312720137 @default.
- W4387530823 cites W4313399349 @default.
- W4387530823 cites W4313472438 @default.
- W4387530823 cites W4315631348 @default.
- W4387530823 cites W4323306180 @default.
- W4387530823 cites W4364375123 @default.
- W4387530823 doi "https://doi.org/10.1016/j.engappai.2023.107256" @default.
- W4387530823 hasPublicationYear "2024" @default.
- W4387530823 type Work @default.
- W4387530823 citedByCount "0" @default.
- W4387530823 crossrefType "journal-article" @default.
- W4387530823 hasAuthorship W4387530823A5013542448 @default.
- W4387530823 hasAuthorship W4387530823A5035487516 @default.
- W4387530823 hasAuthorship W4387530823A5036242819 @default.
- W4387530823 hasAuthorship W4387530823A5042420425 @default.
- W4387530823 hasConcept C111919701 @default.
- W4387530823 hasConcept C115961682 @default.
- W4387530823 hasConcept C119857082 @default.
- W4387530823 hasConcept C121332964 @default.
- W4387530823 hasConcept C127413603 @default.
- W4387530823 hasConcept C133731056 @default.
- W4387530823 hasConcept C154945302 @default.
- W4387530823 hasConcept C15744967 @default.
- W4387530823 hasConcept C19417346 @default.
- W4387530823 hasConcept C2775924081 @default.
- W4387530823 hasConcept C2775936607 @default.
- W4387530823 hasConcept C41008148 @default.
- W4387530823 hasConcept C50644808 @default.
- W4387530823 hasConcept C62520636 @default.
- W4387530823 hasConcept C79379906 @default.
- W4387530823 hasConcept C97541855 @default.
- W4387530823 hasConcept C98045186 @default.
- W4387530823 hasConcept C99498987 @default.
- W4387530823 hasConceptScore W4387530823C111919701 @default.
- W4387530823 hasConceptScore W4387530823C115961682 @default.
- W4387530823 hasConceptScore W4387530823C119857082 @default.
- W4387530823 hasConceptScore W4387530823C121332964 @default.
- W4387530823 hasConceptScore W4387530823C127413603 @default.
- W4387530823 hasConceptScore W4387530823C133731056 @default.
- W4387530823 hasConceptScore W4387530823C154945302 @default.
- W4387530823 hasConceptScore W4387530823C15744967 @default.
- W4387530823 hasConceptScore W4387530823C19417346 @default.
- W4387530823 hasConceptScore W4387530823C2775924081 @default.
- W4387530823 hasConceptScore W4387530823C2775936607 @default.
- W4387530823 hasConceptScore W4387530823C41008148 @default.
- W4387530823 hasConceptScore W4387530823C50644808 @default.
- W4387530823 hasConceptScore W4387530823C62520636 @default.
- W4387530823 hasConceptScore W4387530823C79379906 @default.
- W4387530823 hasConceptScore W4387530823C97541855 @default.
- W4387530823 hasConceptScore W4387530823C98045186 @default.
- W4387530823 hasConceptScore W4387530823C99498987 @default.
- W4387530823 hasLocation W43875308231 @default.
- W4387530823 hasOpenAccess W4387530823 @default.
- W4387530823 hasPrimaryLocation W43875308231 @default.
- W4387530823 hasRelatedWork W2024136090 @default.