Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387533850> ?p ?o ?g. }
- W4387533850 endingPage "108306" @default.
- W4387533850 startingPage "108306" @default.
- W4387533850 abstract "The rapid and accurate estimation of maize above-ground biomass (AGB) is pivotal for precise agricultural management. The rapid evolution of unmanned aerial vehicles (UAVs) and sensor technology has introduced a novel method for obtaining AGB information. Nevertheless, individual sensors may lack comprehensive data, leading to reduced AGB estimation accuracy in certain scenarios. This study collected UAV multi-spectral (MS) and thermal infrared (TIR) data, alongside soil and plant analyzer development (SPAD) values, from maize across multiple growth stages (jointing, trumpet, and big trumpet) during 2022 and 2023. Diverse data fusion programs were devised to explore the potential of combining multi-source sensor data with SPAD values to estimate AGB. The efficacy of CatBoost was evaluated and benchmarked against Support Vector Regression (SVR) and Random Forest Regression (RFR) algorithms. For the entire growth, findings reveal that the fusion of multi-source sensor data (MS + TIR) can mitigate the data insufficiency in single-sensor estimations. The resulting R2 values range from 0.608 to 0.817. Optimal estimation outcomes were achieved by the fusion of multi-source sensor data with SPAD values (MS + TIR + SPAD), yielding R2 values ranging from 0.685 to 0.872. For a single growth stage, there are variations in the estimation accuracy across different growth stages. From the jointing stage to the big trumpet stage, the estimation accuracy consistently increases, with the highest accuracy observed during the big trumpet stage, with R2 ranging from 0.721 to 0.901. Additionally, in alignment with the results for the entire growth stage, the fusion of multi-source sensor data with SPAD values still yields the highest estimation accuracy during different growth stages. In a comparison of different machine learning algorithms, for both the entire growth stage and single growth stages, SVR, RFR, and CatBoost achieved R2 values ranging from 0.305 to 0.824, 0.368 to 0.881, and 0.451 to 0.901, respectively. Notably, the CatBoost algorithm exhibited heightened estimation accuracy. The fusion of multi-source sensor data with SPAD values combined with the CatBoost algorithm results in accurate and reliable maize AGB estimation accuracy. This high-throughput approach to crop phenotyping is characterized by speed and accuracy and serves as a valuable reference for rapidly acquiring AGB information in this geographical region." @default.
- W4387533850 created "2023-10-12" @default.
- W4387533850 creator A5000067263 @default.
- W4387533850 creator A5011803621 @default.
- W4387533850 creator A5044246694 @default.
- W4387533850 creator A5051903441 @default.
- W4387533850 creator A5073424108 @default.
- W4387533850 creator A5086967001 @default.
- W4387533850 creator A5090434992 @default.
- W4387533850 date "2023-11-01" @default.
- W4387533850 modified "2023-10-12" @default.
- W4387533850 title "CatBoost algorithm for estimating maize above-ground biomass using unmanned aerial vehicle-based multi-source sensor data and SPAD values" @default.
- W4387533850 cites W1506890552 @default.
- W4387533850 cites W1964217023 @default.
- W4387533850 cites W1974286236 @default.
- W4387533850 cites W1998084412 @default.
- W4387533850 cites W2000613913 @default.
- W4387533850 cites W2056352756 @default.
- W4387533850 cites W2063623478 @default.
- W4387533850 cites W2149813070 @default.
- W4387533850 cites W2167787089 @default.
- W4387533850 cites W2523311857 @default.
- W4387533850 cites W2736116482 @default.
- W4387533850 cites W2904027073 @default.
- W4387533850 cites W2911964244 @default.
- W4387533850 cites W2918084323 @default.
- W4387533850 cites W2919795560 @default.
- W4387533850 cites W2942851257 @default.
- W4387533850 cites W2964052062 @default.
- W4387533850 cites W2996041315 @default.
- W4387533850 cites W2997133053 @default.
- W4387533850 cites W3000369451 @default.
- W4387533850 cites W3007045993 @default.
- W4387533850 cites W3037968153 @default.
- W4387533850 cites W3039389508 @default.
- W4387533850 cites W3094929171 @default.
- W4387533850 cites W3144142665 @default.
- W4387533850 cites W3185391681 @default.
- W4387533850 cites W4200406763 @default.
- W4387533850 cites W4221038349 @default.
- W4387533850 cites W4221093715 @default.
- W4387533850 cites W4283768492 @default.
- W4387533850 cites W4383819354 @default.
- W4387533850 cites W4385161934 @default.
- W4387533850 doi "https://doi.org/10.1016/j.compag.2023.108306" @default.
- W4387533850 hasPublicationYear "2023" @default.
- W4387533850 type Work @default.
- W4387533850 citedByCount "0" @default.
- W4387533850 crossrefType "journal-article" @default.
- W4387533850 hasAuthorship W4387533850A5000067263 @default.
- W4387533850 hasAuthorship W4387533850A5011803621 @default.
- W4387533850 hasAuthorship W4387533850A5044246694 @default.
- W4387533850 hasAuthorship W4387533850A5051903441 @default.
- W4387533850 hasAuthorship W4387533850A5073424108 @default.
- W4387533850 hasAuthorship W4387533850A5086967001 @default.
- W4387533850 hasAuthorship W4387533850A5090434992 @default.
- W4387533850 hasConcept C11413529 @default.
- W4387533850 hasConcept C115051666 @default.
- W4387533850 hasConcept C115540264 @default.
- W4387533850 hasConcept C118518473 @default.
- W4387533850 hasConcept C120217122 @default.
- W4387533850 hasConcept C12267149 @default.
- W4387533850 hasConcept C124101348 @default.
- W4387533850 hasConcept C127413603 @default.
- W4387533850 hasConcept C146357865 @default.
- W4387533850 hasConcept C146978453 @default.
- W4387533850 hasConcept C151730666 @default.
- W4387533850 hasConcept C154945302 @default.
- W4387533850 hasConcept C166957645 @default.
- W4387533850 hasConcept C169258074 @default.
- W4387533850 hasConcept C204323151 @default.
- W4387533850 hasConcept C205649164 @default.
- W4387533850 hasConcept C33954974 @default.
- W4387533850 hasConcept C39432304 @default.
- W4387533850 hasConcept C41008148 @default.
- W4387533850 hasConcept C62649853 @default.
- W4387533850 hasConcept C6557445 @default.
- W4387533850 hasConcept C75684735 @default.
- W4387533850 hasConcept C76155785 @default.
- W4387533850 hasConcept C86803240 @default.
- W4387533850 hasConceptScore W4387533850C11413529 @default.
- W4387533850 hasConceptScore W4387533850C115051666 @default.
- W4387533850 hasConceptScore W4387533850C115540264 @default.
- W4387533850 hasConceptScore W4387533850C118518473 @default.
- W4387533850 hasConceptScore W4387533850C120217122 @default.
- W4387533850 hasConceptScore W4387533850C12267149 @default.
- W4387533850 hasConceptScore W4387533850C124101348 @default.
- W4387533850 hasConceptScore W4387533850C127413603 @default.
- W4387533850 hasConceptScore W4387533850C146357865 @default.
- W4387533850 hasConceptScore W4387533850C146978453 @default.
- W4387533850 hasConceptScore W4387533850C151730666 @default.
- W4387533850 hasConceptScore W4387533850C154945302 @default.
- W4387533850 hasConceptScore W4387533850C166957645 @default.
- W4387533850 hasConceptScore W4387533850C169258074 @default.
- W4387533850 hasConceptScore W4387533850C204323151 @default.
- W4387533850 hasConceptScore W4387533850C205649164 @default.
- W4387533850 hasConceptScore W4387533850C33954974 @default.
- W4387533850 hasConceptScore W4387533850C39432304 @default.