Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387534972> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387534972 abstract "Abstract At present, the target detection network based on deep learning still has some problems in the field of lane line recognition, such as unclear Lane difference, low recognition accuracy, high false detection rate and high missed detection rate, high delay and high power consumption. In order to solve these problems, this paper proposes an asymmetric convolutional lane detection and tracking network AK-SCNNLane based on spatial instance segmentation. In the coding part, VGG16 network with asymmetric convolution kernel and spatial convolution neural network (SCNN) are applied to improve the ability of network structure to learn spatial relationships, which solves the problems of fuzzy, discontinuous and low real-time prediction of lane lines. At the same time, based on LaneNet, two branch tasks after encoding output are coupled to improve the poor foreground and background recognition and the indistinguishability between lanes. Finally, the method is compared with several semantic segmentation-based lane line algorithms in TuSimple dataset. Experimental results show that the accuracy score of this algorithm is 97.12% , and the false detection rate and missing detection rate are better than other networks. Compared with LaneNet, the false detection rate and missing detection rate are reduced by 44.87% and 12.7%, respectively. At the same time, the amount of calculation is significantly reduced, and the runtimes is reduced by 89.74% compared with LaneNet, which effectively improves the recognition and detection speed, and meets the real-time requirements (+30fps) that automatic driving scenes must meet. To sum up, the detection algorithm is not only effective, but also efficient, and basically meets the requirements of real-time lane detection and tracking.in comparison with LaneNet, the false detection rate is reduced by 44.87% and 12.7%." @default.
- W4387534972 created "2023-10-12" @default.
- W4387534972 creator A5049459261 @default.
- W4387534972 creator A5068507059 @default.
- W4387534972 creator A5073568638 @default.
- W4387534972 date "2023-10-11" @default.
- W4387534972 modified "2023-10-12" @default.
- W4387534972 title "Asymmetric convolution multi lane detection and tracking network based on spatial semantic segmentation" @default.
- W4387534972 cites W2052703053 @default.
- W4387534972 cites W2159132531 @default.
- W4387534972 cites W2913960518 @default.
- W4387534972 cites W2963223517 @default.
- W4387534972 cites W2981441441 @default.
- W4387534972 cites W3102349010 @default.
- W4387534972 cites W3157173860 @default.
- W4387534972 cites W4293406525 @default.
- W4387534972 doi "https://doi.org/10.21203/rs.3.rs-3415354/v1" @default.
- W4387534972 hasPublicationYear "2023" @default.
- W4387534972 type Work @default.
- W4387534972 citedByCount "0" @default.
- W4387534972 crossrefType "posted-content" @default.
- W4387534972 hasAuthorship W4387534972A5049459261 @default.
- W4387534972 hasAuthorship W4387534972A5068507059 @default.
- W4387534972 hasAuthorship W4387534972A5073568638 @default.
- W4387534972 hasBestOaLocation W43875349721 @default.
- W4387534972 hasConcept C11413529 @default.
- W4387534972 hasConcept C114614502 @default.
- W4387534972 hasConcept C153180895 @default.
- W4387534972 hasConcept C154945302 @default.
- W4387534972 hasConcept C2776151529 @default.
- W4387534972 hasConcept C33923547 @default.
- W4387534972 hasConcept C41008148 @default.
- W4387534972 hasConcept C45347329 @default.
- W4387534972 hasConcept C50644808 @default.
- W4387534972 hasConcept C74193536 @default.
- W4387534972 hasConcept C81363708 @default.
- W4387534972 hasConcept C89600930 @default.
- W4387534972 hasConceptScore W4387534972C11413529 @default.
- W4387534972 hasConceptScore W4387534972C114614502 @default.
- W4387534972 hasConceptScore W4387534972C153180895 @default.
- W4387534972 hasConceptScore W4387534972C154945302 @default.
- W4387534972 hasConceptScore W4387534972C2776151529 @default.
- W4387534972 hasConceptScore W4387534972C33923547 @default.
- W4387534972 hasConceptScore W4387534972C41008148 @default.
- W4387534972 hasConceptScore W4387534972C45347329 @default.
- W4387534972 hasConceptScore W4387534972C50644808 @default.
- W4387534972 hasConceptScore W4387534972C74193536 @default.
- W4387534972 hasConceptScore W4387534972C81363708 @default.
- W4387534972 hasConceptScore W4387534972C89600930 @default.
- W4387534972 hasLocation W43875349721 @default.
- W4387534972 hasOpenAccess W4387534972 @default.
- W4387534972 hasPrimaryLocation W43875349721 @default.
- W4387534972 hasRelatedWork W2890372105 @default.
- W4387534972 hasRelatedWork W2964954556 @default.
- W4387534972 hasRelatedWork W2982536526 @default.
- W4387534972 hasRelatedWork W3019910406 @default.
- W4387534972 hasRelatedWork W3034421924 @default.
- W4387534972 hasRelatedWork W3131692135 @default.
- W4387534972 hasRelatedWork W4380302312 @default.
- W4387534972 hasRelatedWork W4385338604 @default.
- W4387534972 hasRelatedWork W4386858688 @default.
- W4387534972 hasRelatedWork W2969228573 @default.
- W4387534972 isParatext "false" @default.
- W4387534972 isRetracted "false" @default.
- W4387534972 workType "article" @default.