Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387544211> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387544211 abstract "In this paper, we study the open problems raised by Karp et al. in FOCS 2000, where the authors formulated the end-to-end congestion control as a repeated game between a flow and an adversary. They mentioned several open problems including finding equilibria in a more realistic game model for the situation where the available bandwidth is a result of competition among multiple flows instead of being chosen by an adversary, and designing the randomized algorithm to deal with the dynamic change of network bandwidth. Although there have been many game-theoretic works for congestion control, to the best of our knowledge, the above two problems still remain unsolved over the past decades. We take a step further to address the above two problems by first modeling the end-to-end congestion control as a repeated unknown general-sum game among multiple flows with bandit feedback. Each flow is a player in this unknown game, making decisions on how many packets to send. The throughput for each flow depends on all the flows' rates and the network capacity. The unknown setting and bandit feedback capture the essence of end-to-end congestion control: each flow has no information about others (e.g., the number, actions, and packet loss of other flows), and only receives limited information for its chosen action. Then, we propose a randomized no-regret learning algorithm for each flow called LUC based on a swap-regret-minimizing technique. We prove that LUC can guarantee a polynomial-time convergence rate to correlated equilibria in the multi-player setting. Finally, we have implemented LUC through the Linux kernel, and conducted extensive fairness-related experiments in Mininet and trace-driven experiments with Pantheon to show that each flow with LUC can fairly share the bandwidth in homogeneous scenarios, and be competitive but TCP-friendly in heterogeneous scenarios." @default.
- W4387544211 created "2023-10-12" @default.
- W4387544211 creator A5022175140 @default.
- W4387544211 creator A5043097022 @default.
- W4387544211 creator A5084653751 @default.
- W4387544211 date "2023-07-01" @default.
- W4387544211 modified "2023-10-12" @default.
- W4387544211 title "End-to-End Congestion Control as Learning for Unknown Games with Bandit Feedback" @default.
- W4387544211 cites W1488279292 @default.
- W4387544211 cites W1565756777 @default.
- W4387544211 cites W1570963478 @default.
- W4387544211 cites W1999868428 @default.
- W4387544211 cites W2022844530 @default.
- W4387544211 cites W2048096598 @default.
- W4387544211 cites W2060113599 @default.
- W4387544211 cites W2063675897 @default.
- W4387544211 cites W2070646375 @default.
- W4387544211 cites W2077902449 @default.
- W4387544211 cites W2085761737 @default.
- W4387544211 cites W2094238774 @default.
- W4387544211 cites W2097610862 @default.
- W4387544211 cites W2116718598 @default.
- W4387544211 cites W2125537511 @default.
- W4387544211 cites W2126776273 @default.
- W4387544211 cites W2130328331 @default.
- W4387544211 cites W2136451165 @default.
- W4387544211 cites W2139150553 @default.
- W4387544211 cites W2149254401 @default.
- W4387544211 cites W2151359428 @default.
- W4387544211 cites W2155323982 @default.
- W4387544211 cites W2801358835 @default.
- W4387544211 cites W3016712945 @default.
- W4387544211 cites W3046478992 @default.
- W4387544211 cites W3047438757 @default.
- W4387544211 cites W3160643632 @default.
- W4387544211 cites W3197675011 @default.
- W4387544211 cites W3212111697 @default.
- W4387544211 cites W4282936078 @default.
- W4387544211 cites W4285307446 @default.
- W4387544211 doi "https://doi.org/10.1109/icdcs57875.2023.00060" @default.
- W4387544211 hasPublicationYear "2023" @default.
- W4387544211 type Work @default.
- W4387544211 citedByCount "0" @default.
- W4387544211 crossrefType "proceedings-article" @default.
- W4387544211 hasAuthorship W4387544211A5022175140 @default.
- W4387544211 hasAuthorship W4387544211A5043097022 @default.
- W4387544211 hasAuthorship W4387544211A5084653751 @default.
- W4387544211 hasConcept C119857082 @default.
- W4387544211 hasConcept C126255220 @default.
- W4387544211 hasConcept C154945302 @default.
- W4387544211 hasConcept C158379750 @default.
- W4387544211 hasConcept C186766456 @default.
- W4387544211 hasConcept C195563490 @default.
- W4387544211 hasConcept C31258907 @default.
- W4387544211 hasConcept C33923547 @default.
- W4387544211 hasConcept C41008148 @default.
- W4387544211 hasConcept C50817715 @default.
- W4387544211 hasConcept C97541855 @default.
- W4387544211 hasConceptScore W4387544211C119857082 @default.
- W4387544211 hasConceptScore W4387544211C126255220 @default.
- W4387544211 hasConceptScore W4387544211C154945302 @default.
- W4387544211 hasConceptScore W4387544211C158379750 @default.
- W4387544211 hasConceptScore W4387544211C186766456 @default.
- W4387544211 hasConceptScore W4387544211C195563490 @default.
- W4387544211 hasConceptScore W4387544211C31258907 @default.
- W4387544211 hasConceptScore W4387544211C33923547 @default.
- W4387544211 hasConceptScore W4387544211C41008148 @default.
- W4387544211 hasConceptScore W4387544211C50817715 @default.
- W4387544211 hasConceptScore W4387544211C97541855 @default.
- W4387544211 hasLocation W43875442111 @default.
- W4387544211 hasOpenAccess W4387544211 @default.
- W4387544211 hasPrimaryLocation W43875442111 @default.
- W4387544211 hasRelatedWork W1483864377 @default.
- W4387544211 hasRelatedWork W2131441491 @default.
- W4387544211 hasRelatedWork W2161382340 @default.
- W4387544211 hasRelatedWork W2174583209 @default.
- W4387544211 hasRelatedWork W2383692046 @default.
- W4387544211 hasRelatedWork W2387720253 @default.
- W4387544211 hasRelatedWork W2890827962 @default.
- W4387544211 hasRelatedWork W2954037655 @default.
- W4387544211 hasRelatedWork W4292701710 @default.
- W4387544211 hasRelatedWork W85479676 @default.
- W4387544211 isParatext "false" @default.
- W4387544211 isRetracted "false" @default.
- W4387544211 workType "article" @default.