Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387559097> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387559097 abstract "In the field of global optimization, many existing algorithms face challenges posed by non-convex target functions and high computational complexity or unavailability of gradient information. These limitations, exacerbated by sensitivity to initial conditions, often lead to suboptimal solutions or failed convergence. This is true even for Metaheuristic algorithms designed to amalgamate different optimization techniques to improve their efficiency and robustness. To address these challenges, we develop a sequence of multidimensional integration-based methods that we show to converge to the global optima under some mild regularity conditions. Our probabilistic approach does not require the use of gradients and is underpinned by a mathematically rigorous convergence framework anchored in the nuanced properties of nascent optima distribution. In order to alleviate the problem of multidimensional integration, we develop a latent slice sampler that enjoys a geometric rate of convergence in generating samples from the nascent optima distribution, which is used to approximate the global optima. The proposed Probabilistic Global Optimizer (ProGO) provides a scalable unified framework to approximate the global optima of any continuous function defined on a domain of arbitrary dimension. Empirical illustrations of ProGO across a variety of popular non-convex test functions (having finite global optima) reveal that the proposed algorithm outperforms, by order of magnitude, many existing state-of-the-art methods, including gradient-based, zeroth-order gradient-free, and some Bayesian Optimization methods, in term regret value and speed of convergence. It is, however, to be noted that our approach may not be suitable for functions that are expensive to compute." @default.
- W4387559097 created "2023-10-12" @default.
- W4387559097 creator A5003757265 @default.
- W4387559097 creator A5046173951 @default.
- W4387559097 date "2023-10-04" @default.
- W4387559097 modified "2023-10-13" @default.
- W4387559097 title "ProGO: Probabilistic Global Optimizer" @default.
- W4387559097 doi "https://doi.org/10.48550/arxiv.2310.04457" @default.
- W4387559097 hasPublicationYear "2023" @default.
- W4387559097 type Work @default.
- W4387559097 citedByCount "0" @default.
- W4387559097 crossrefType "posted-content" @default.
- W4387559097 hasAuthorship W4387559097A5003757265 @default.
- W4387559097 hasAuthorship W4387559097A5046173951 @default.
- W4387559097 hasBestOaLocation W43875590971 @default.
- W4387559097 hasConcept C104317684 @default.
- W4387559097 hasConcept C119857082 @default.
- W4387559097 hasConcept C126255220 @default.
- W4387559097 hasConcept C137836250 @default.
- W4387559097 hasConcept C141934464 @default.
- W4387559097 hasConcept C154945302 @default.
- W4387559097 hasConcept C162324750 @default.
- W4387559097 hasConcept C164752517 @default.
- W4387559097 hasConcept C185592680 @default.
- W4387559097 hasConcept C2777303404 @default.
- W4387559097 hasConcept C33923547 @default.
- W4387559097 hasConcept C41008148 @default.
- W4387559097 hasConcept C49937458 @default.
- W4387559097 hasConcept C50522688 @default.
- W4387559097 hasConcept C50817715 @default.
- W4387559097 hasConcept C55493867 @default.
- W4387559097 hasConcept C63479239 @default.
- W4387559097 hasConceptScore W4387559097C104317684 @default.
- W4387559097 hasConceptScore W4387559097C119857082 @default.
- W4387559097 hasConceptScore W4387559097C126255220 @default.
- W4387559097 hasConceptScore W4387559097C137836250 @default.
- W4387559097 hasConceptScore W4387559097C141934464 @default.
- W4387559097 hasConceptScore W4387559097C154945302 @default.
- W4387559097 hasConceptScore W4387559097C162324750 @default.
- W4387559097 hasConceptScore W4387559097C164752517 @default.
- W4387559097 hasConceptScore W4387559097C185592680 @default.
- W4387559097 hasConceptScore W4387559097C2777303404 @default.
- W4387559097 hasConceptScore W4387559097C33923547 @default.
- W4387559097 hasConceptScore W4387559097C41008148 @default.
- W4387559097 hasConceptScore W4387559097C49937458 @default.
- W4387559097 hasConceptScore W4387559097C50522688 @default.
- W4387559097 hasConceptScore W4387559097C50817715 @default.
- W4387559097 hasConceptScore W4387559097C55493867 @default.
- W4387559097 hasConceptScore W4387559097C63479239 @default.
- W4387559097 hasLocation W43875590971 @default.
- W4387559097 hasOpenAccess W4387559097 @default.
- W4387559097 hasPrimaryLocation W43875590971 @default.
- W4387559097 hasRelatedWork W1603259840 @default.
- W4387559097 hasRelatedWork W2127655891 @default.
- W4387559097 hasRelatedWork W2377941745 @default.
- W4387559097 hasRelatedWork W2564248808 @default.
- W4387559097 hasRelatedWork W2571293944 @default.
- W4387559097 hasRelatedWork W2804361238 @default.
- W4387559097 hasRelatedWork W2990886677 @default.
- W4387559097 hasRelatedWork W2995097707 @default.
- W4387559097 hasRelatedWork W4299455866 @default.
- W4387559097 hasRelatedWork W3123386130 @default.
- W4387559097 isParatext "false" @default.
- W4387559097 isRetracted "false" @default.
- W4387559097 workType "article" @default.