Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387559341> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4387559341 abstract "Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services. Despite its benefits, ensuring the reliability and safety of a microservice system remains highly challenging. Existing anomaly detection algorithms based on a single data modality (i.e., metrics, logs, or traces) fail to fully account for the complex correlations and interactions between different modalities, leading to false negatives and false alarms, whereas incorporating more data modalities can offer opportunities for further performance gain. As a fresh attempt, we propose in this paper a semi-supervised graph-based anomaly detection method, MSTGAD, which seamlessly integrates all available data modalities via attentive multi-modal learning. First, we extract and normalize features from the three modalities, and further integrate them using a graph, namely MST (microservice system twin) graph, where each node represents a service instance and the edge indicates the scheduling relationship between different service instances. The MST graph provides a virtual representation of the status and scheduling relationships among service instances of a real-world microservice system. Second, we construct a transformer-based neural network with both spatial and temporal attention mechanisms to model the inter-correlations between different modalities and temporal dependencies between the data points. This enables us to detect anomalies automatically and accurately in real-time. The source code of MSTGAD is publicly available at https://github.com/alipay/microservice_system_twin_graph_based_anomaly_detection." @default.
- W4387559341 created "2023-10-12" @default.
- W4387559341 creator A5025970120 @default.
- W4387559341 creator A5027009250 @default.
- W4387559341 creator A5049316142 @default.
- W4387559341 creator A5049692788 @default.
- W4387559341 creator A5069107293 @default.
- W4387559341 date "2023-10-07" @default.
- W4387559341 modified "2023-10-13" @default.
- W4387559341 title "Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System" @default.
- W4387559341 doi "https://doi.org/10.48550/arxiv.2310.04701" @default.
- W4387559341 hasPublicationYear "2023" @default.
- W4387559341 type Work @default.
- W4387559341 citedByCount "0" @default.
- W4387559341 crossrefType "posted-content" @default.
- W4387559341 hasAuthorship W4387559341A5025970120 @default.
- W4387559341 hasAuthorship W4387559341A5027009250 @default.
- W4387559341 hasAuthorship W4387559341A5049316142 @default.
- W4387559341 hasAuthorship W4387559341A5049692788 @default.
- W4387559341 hasAuthorship W4387559341A5069107293 @default.
- W4387559341 hasBestOaLocation W43875593411 @default.
- W4387559341 hasConcept C111919701 @default.
- W4387559341 hasConcept C119857082 @default.
- W4387559341 hasConcept C124101348 @default.
- W4387559341 hasConcept C132525143 @default.
- W4387559341 hasConcept C144024400 @default.
- W4387559341 hasConcept C154945302 @default.
- W4387559341 hasConcept C2779903281 @default.
- W4387559341 hasConcept C36289849 @default.
- W4387559341 hasConcept C41008148 @default.
- W4387559341 hasConcept C43126263 @default.
- W4387559341 hasConcept C59404180 @default.
- W4387559341 hasConcept C739882 @default.
- W4387559341 hasConcept C80444323 @default.
- W4387559341 hasConceptScore W4387559341C111919701 @default.
- W4387559341 hasConceptScore W4387559341C119857082 @default.
- W4387559341 hasConceptScore W4387559341C124101348 @default.
- W4387559341 hasConceptScore W4387559341C132525143 @default.
- W4387559341 hasConceptScore W4387559341C144024400 @default.
- W4387559341 hasConceptScore W4387559341C154945302 @default.
- W4387559341 hasConceptScore W4387559341C2779903281 @default.
- W4387559341 hasConceptScore W4387559341C36289849 @default.
- W4387559341 hasConceptScore W4387559341C41008148 @default.
- W4387559341 hasConceptScore W4387559341C43126263 @default.
- W4387559341 hasConceptScore W4387559341C59404180 @default.
- W4387559341 hasConceptScore W4387559341C739882 @default.
- W4387559341 hasConceptScore W4387559341C80444323 @default.
- W4387559341 hasLocation W43875593411 @default.
- W4387559341 hasOpenAccess W4387559341 @default.
- W4387559341 hasPrimaryLocation W43875593411 @default.
- W4387559341 hasRelatedWork W2026860389 @default.
- W4387559341 hasRelatedWork W2168054807 @default.
- W4387559341 hasRelatedWork W2383394264 @default.
- W4387559341 hasRelatedWork W2968752923 @default.
- W4387559341 hasRelatedWork W3207883763 @default.
- W4387559341 hasRelatedWork W4225369406 @default.
- W4387559341 hasRelatedWork W4285218279 @default.
- W4387559341 hasRelatedWork W4306353150 @default.
- W4387559341 hasRelatedWork W4386977688 @default.
- W4387559341 hasRelatedWork W2185469136 @default.
- W4387559341 isParatext "false" @default.
- W4387559341 isRetracted "false" @default.
- W4387559341 workType "article" @default.