Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387560129> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387560129 abstract "In recent years, a growing number of method and application works have adapted and applied the causal-graphical-model framework to time series data. Many of these works employ time-resolved causal graphs that extend infinitely into the past and future and whose edges are repetitive in time, thereby reflecting the assumption of stationary causal relationships. However, most results and algorithms from the causal-graphical-model framework are not designed for infinite graphs. In this work, we develop a method for projecting infinite time series graphs with repetitive edges to marginal graphical models on a finite time window. These finite marginal graphs provide the answers to $m$-separation queries with respect to the infinite graph, a task that was previously unresolved. Moreover, we argue that these marginal graphs are useful for causal discovery and causal effect estimation in time series, effectively enabling to apply results developed for finite graphs to the infinite graphs. The projection procedure relies on finding common ancestors in the to-be-projected graph and is, by itself, not new. However, the projection procedure has not yet been algorithmically implemented for time series graphs since in these infinite graphs there can be infinite sets of paths that might give rise to common ancestors. We solve the search over these possibly infinite sets of paths by an intriguing combination of path-finding techniques for finite directed graphs and solution theory for linear Diophantine equations. By providing an algorithm that carries out the projection, our paper makes an important step towards a theoretically-grounded and method-agnostic generalization of a range of causal inference methods and results to time series." @default.
- W4387560129 created "2023-10-12" @default.
- W4387560129 creator A5025759970 @default.
- W4387560129 creator A5052453929 @default.
- W4387560129 creator A5055996496 @default.
- W4387560129 creator A5076653467 @default.
- W4387560129 creator A5093047728 @default.
- W4387560129 date "2023-10-09" @default.
- W4387560129 modified "2023-10-18" @default.
- W4387560129 title "Projecting infinite time series graphs to finite marginal graphs using number theory" @default.
- W4387560129 doi "https://doi.org/10.48550/arxiv.2310.05526" @default.
- W4387560129 hasPublicationYear "2023" @default.
- W4387560129 type Work @default.
- W4387560129 citedByCount "0" @default.
- W4387560129 crossrefType "posted-content" @default.
- W4387560129 hasAuthorship W4387560129A5025759970 @default.
- W4387560129 hasAuthorship W4387560129A5052453929 @default.
- W4387560129 hasAuthorship W4387560129A5055996496 @default.
- W4387560129 hasAuthorship W4387560129A5076653467 @default.
- W4387560129 hasAuthorship W4387560129A5093047728 @default.
- W4387560129 hasBestOaLocation W43875601291 @default.
- W4387560129 hasConcept C102192266 @default.
- W4387560129 hasConcept C11413529 @default.
- W4387560129 hasConcept C114614502 @default.
- W4387560129 hasConcept C118615104 @default.
- W4387560129 hasConcept C132525143 @default.
- W4387560129 hasConcept C134306372 @default.
- W4387560129 hasConcept C143724316 @default.
- W4387560129 hasConcept C151730666 @default.
- W4387560129 hasConcept C160446614 @default.
- W4387560129 hasConcept C162392398 @default.
- W4387560129 hasConcept C203776342 @default.
- W4387560129 hasConcept C206530611 @default.
- W4387560129 hasConcept C33923547 @default.
- W4387560129 hasConcept C41008148 @default.
- W4387560129 hasConcept C43517604 @default.
- W4387560129 hasConcept C57493831 @default.
- W4387560129 hasConcept C74133993 @default.
- W4387560129 hasConcept C8554925 @default.
- W4387560129 hasConcept C86803240 @default.
- W4387560129 hasConceptScore W4387560129C102192266 @default.
- W4387560129 hasConceptScore W4387560129C11413529 @default.
- W4387560129 hasConceptScore W4387560129C114614502 @default.
- W4387560129 hasConceptScore W4387560129C118615104 @default.
- W4387560129 hasConceptScore W4387560129C132525143 @default.
- W4387560129 hasConceptScore W4387560129C134306372 @default.
- W4387560129 hasConceptScore W4387560129C143724316 @default.
- W4387560129 hasConceptScore W4387560129C151730666 @default.
- W4387560129 hasConceptScore W4387560129C160446614 @default.
- W4387560129 hasConceptScore W4387560129C162392398 @default.
- W4387560129 hasConceptScore W4387560129C203776342 @default.
- W4387560129 hasConceptScore W4387560129C206530611 @default.
- W4387560129 hasConceptScore W4387560129C33923547 @default.
- W4387560129 hasConceptScore W4387560129C41008148 @default.
- W4387560129 hasConceptScore W4387560129C43517604 @default.
- W4387560129 hasConceptScore W4387560129C57493831 @default.
- W4387560129 hasConceptScore W4387560129C74133993 @default.
- W4387560129 hasConceptScore W4387560129C8554925 @default.
- W4387560129 hasConceptScore W4387560129C86803240 @default.
- W4387560129 hasLocation W43875601291 @default.
- W4387560129 hasOpenAccess W4387560129 @default.
- W4387560129 hasPrimaryLocation W43875601291 @default.
- W4387560129 hasRelatedWork W1946718366 @default.
- W4387560129 hasRelatedWork W2061237693 @default.
- W4387560129 hasRelatedWork W2157783000 @default.
- W4387560129 hasRelatedWork W2788975631 @default.
- W4387560129 hasRelatedWork W2898526288 @default.
- W4387560129 hasRelatedWork W2949743119 @default.
- W4387560129 hasRelatedWork W2963009577 @default.
- W4387560129 hasRelatedWork W4220852510 @default.
- W4387560129 hasRelatedWork W4302405066 @default.
- W4387560129 hasRelatedWork W4385327816 @default.
- W4387560129 isParatext "false" @default.
- W4387560129 isRetracted "false" @default.
- W4387560129 workType "article" @default.