Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387560143> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4387560143 abstract "The scientific innovation in Natural Language Processing (NLP) and more broadly in artificial intelligence (AI) is at its fastest pace to date. As large language models (LLMs) unleash a new era of automation, important debates emerge regarding the benefits and risks of their development, deployment and use. Currently, these debates have been dominated by often polarized narratives mainly led by the AI Safety and AI Ethics movements. This polarization, often amplified by social media, is swaying political agendas on AI regulation and governance and posing issues of regulatory capture. Capture occurs when the regulator advances the interests of the industry it is supposed to regulate, or of special interest groups rather than pursuing the general public interest. Meanwhile in NLP research, attention has been increasingly paid to the discussion of regulating risks and harms. This often happens without systematic methodologies or sufficient rooting in the disciplines that inspire an extended scope of NLP research, jeopardizing the scientific integrity of these endeavors. Regulation studies are a rich source of knowledge on how to systematically deal with risk and uncertainty, as well as with scientific evidence, to evaluate and compare regulatory options. This resource has largely remained untapped so far. In this paper, we argue how NLP research on these topics can benefit from proximity to regulatory studies and adjacent fields. We do so by discussing basic tenets of regulation, and risk and uncertainty, and by highlighting the shortcomings of current NLP discussions dealing with risk assessment. Finally, we advocate for the development of a new multidisciplinary research space on regulation and NLP (RegNLP), focused on connecting scientific knowledge to regulatory processes based on systematic methodologies." @default.
- W4387560143 created "2023-10-12" @default.
- W4387560143 creator A5010341007 @default.
- W4387560143 creator A5010354377 @default.
- W4387560143 creator A5017123929 @default.
- W4387560143 creator A5079179621 @default.
- W4387560143 creator A5084695889 @default.
- W4387560143 date "2023-10-09" @default.
- W4387560143 modified "2023-10-18" @default.
- W4387560143 title "Regulation and NLP (RegNLP): Taming Large Language Models" @default.
- W4387560143 doi "https://doi.org/10.48550/arxiv.2310.05553" @default.
- W4387560143 hasPublicationYear "2023" @default.
- W4387560143 type Work @default.
- W4387560143 citedByCount "0" @default.
- W4387560143 crossrefType "posted-content" @default.
- W4387560143 hasAuthorship W4387560143A5010341007 @default.
- W4387560143 hasAuthorship W4387560143A5010354377 @default.
- W4387560143 hasAuthorship W4387560143A5017123929 @default.
- W4387560143 hasAuthorship W4387560143A5079179621 @default.
- W4387560143 hasAuthorship W4387560143A5084695889 @default.
- W4387560143 hasBestOaLocation W43875601431 @default.
- W4387560143 hasConcept C127413603 @default.
- W4387560143 hasConcept C13280743 @default.
- W4387560143 hasConcept C154945302 @default.
- W4387560143 hasConcept C162324750 @default.
- W4387560143 hasConcept C17744445 @default.
- W4387560143 hasConcept C187736073 @default.
- W4387560143 hasConcept C205649164 @default.
- W4387560143 hasConcept C2777526511 @default.
- W4387560143 hasConcept C39389867 @default.
- W4387560143 hasConcept C41008148 @default.
- W4387560143 hasConcept C55587333 @default.
- W4387560143 hasConceptScore W4387560143C127413603 @default.
- W4387560143 hasConceptScore W4387560143C13280743 @default.
- W4387560143 hasConceptScore W4387560143C154945302 @default.
- W4387560143 hasConceptScore W4387560143C162324750 @default.
- W4387560143 hasConceptScore W4387560143C17744445 @default.
- W4387560143 hasConceptScore W4387560143C187736073 @default.
- W4387560143 hasConceptScore W4387560143C205649164 @default.
- W4387560143 hasConceptScore W4387560143C2777526511 @default.
- W4387560143 hasConceptScore W4387560143C39389867 @default.
- W4387560143 hasConceptScore W4387560143C41008148 @default.
- W4387560143 hasConceptScore W4387560143C55587333 @default.
- W4387560143 hasLocation W43875601431 @default.
- W4387560143 hasOpenAccess W4387560143 @default.
- W4387560143 hasPrimaryLocation W43875601431 @default.
- W4387560143 hasRelatedWork W2354923724 @default.
- W4387560143 hasRelatedWork W2362180844 @default.
- W4387560143 hasRelatedWork W2377101853 @default.
- W4387560143 hasRelatedWork W2378405797 @default.
- W4387560143 hasRelatedWork W2386723501 @default.
- W4387560143 hasRelatedWork W2387879414 @default.
- W4387560143 hasRelatedWork W2390304029 @default.
- W4387560143 hasRelatedWork W2748952813 @default.
- W4387560143 hasRelatedWork W2899084033 @default.
- W4387560143 hasRelatedWork W4288601434 @default.
- W4387560143 isParatext "false" @default.
- W4387560143 isRetracted "false" @default.
- W4387560143 workType "article" @default.