Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387560995> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4387560995 abstract "A physics-informed convolutional neural network is proposed to simulate two phase flow in porous media with time-varying well controls. While most of PICNNs in existing literatures worked on parameter-to-state mapping, our proposed network parameterizes the solution with time-varying controls to establish a control-to-state regression. Firstly, finite volume scheme is adopted to discretize flow equations and formulate loss function that respects mass conservation laws. Neumann boundary conditions are seamlessly incorporated into the semi-discretized equations so no additional loss term is needed. The network architecture comprises two parallel U-Net structures, with network inputs being well controls and outputs being the system states. To capture the time-dependent relationship between inputs and outputs, the network is well designed to mimic discretized state space equations. We train the network progressively for every timestep, enabling it to simultaneously predict oil pressure and water saturation at each timestep. After training the network for one timestep, we leverage transfer learning techniques to expedite the training process for subsequent timestep. The proposed model is used to simulate oil-water porous flow scenarios with varying reservoir gridblocks and aspects including computation efficiency and accuracy are compared against corresponding numerical approaches. The results underscore the potential of PICNN in effectively simulating systems with numerous grid blocks, as computation time does not scale with model dimensionality. We assess the temporal error using 10 different testing controls with variation in magnitude and another 10 with higher alternation frequency with proposed control-to-state architecture. Our observations suggest the need for a more robust and reliable model when dealing with controls that exhibit significant variations in magnitude or frequency." @default.
- W4387560995 created "2023-10-12" @default.
- W4387560995 creator A5003688630 @default.
- W4387560995 creator A5052664403 @default.
- W4387560995 creator A5063331411 @default.
- W4387560995 date "2023-10-10" @default.
- W4387560995 modified "2023-10-13" @default.
- W4387560995 title "Transfer learning-based physics-informed convolutional neural network for simulating flow in porous media with time-varying controls" @default.
- W4387560995 doi "https://doi.org/10.48550/arxiv.2310.06319" @default.
- W4387560995 hasPublicationYear "2023" @default.
- W4387560995 type Work @default.
- W4387560995 citedByCount "0" @default.
- W4387560995 crossrefType "posted-content" @default.
- W4387560995 hasAuthorship W4387560995A5003688630 @default.
- W4387560995 hasAuthorship W4387560995A5052664403 @default.
- W4387560995 hasAuthorship W4387560995A5063331411 @default.
- W4387560995 hasBestOaLocation W43875609951 @default.
- W4387560995 hasConcept C111030470 @default.
- W4387560995 hasConcept C11413529 @default.
- W4387560995 hasConcept C121332964 @default.
- W4387560995 hasConcept C134306372 @default.
- W4387560995 hasConcept C153083717 @default.
- W4387560995 hasConcept C154945302 @default.
- W4387560995 hasConcept C2775924081 @default.
- W4387560995 hasConcept C33923547 @default.
- W4387560995 hasConcept C41008148 @default.
- W4387560995 hasConcept C44154836 @default.
- W4387560995 hasConcept C45374587 @default.
- W4387560995 hasConcept C47446073 @default.
- W4387560995 hasConcept C50478463 @default.
- W4387560995 hasConcept C50644808 @default.
- W4387560995 hasConcept C57879066 @default.
- W4387560995 hasConcept C73000952 @default.
- W4387560995 hasConcept C81363708 @default.
- W4387560995 hasConceptScore W4387560995C111030470 @default.
- W4387560995 hasConceptScore W4387560995C11413529 @default.
- W4387560995 hasConceptScore W4387560995C121332964 @default.
- W4387560995 hasConceptScore W4387560995C134306372 @default.
- W4387560995 hasConceptScore W4387560995C153083717 @default.
- W4387560995 hasConceptScore W4387560995C154945302 @default.
- W4387560995 hasConceptScore W4387560995C2775924081 @default.
- W4387560995 hasConceptScore W4387560995C33923547 @default.
- W4387560995 hasConceptScore W4387560995C41008148 @default.
- W4387560995 hasConceptScore W4387560995C44154836 @default.
- W4387560995 hasConceptScore W4387560995C45374587 @default.
- W4387560995 hasConceptScore W4387560995C47446073 @default.
- W4387560995 hasConceptScore W4387560995C50478463 @default.
- W4387560995 hasConceptScore W4387560995C50644808 @default.
- W4387560995 hasConceptScore W4387560995C57879066 @default.
- W4387560995 hasConceptScore W4387560995C73000952 @default.
- W4387560995 hasConceptScore W4387560995C81363708 @default.
- W4387560995 hasLocation W43875609951 @default.
- W4387560995 hasOpenAccess W4387560995 @default.
- W4387560995 hasPrimaryLocation W43875609951 @default.
- W4387560995 hasRelatedWork W1492103595 @default.
- W4387560995 hasRelatedWork W1971388572 @default.
- W4387560995 hasRelatedWork W2334479858 @default.
- W4387560995 hasRelatedWork W2364741597 @default.
- W4387560995 hasRelatedWork W2370926798 @default.
- W4387560995 hasRelatedWork W3020787026 @default.
- W4387560995 hasRelatedWork W3104199760 @default.
- W4387560995 hasRelatedWork W3145389907 @default.
- W4387560995 hasRelatedWork W4234142113 @default.
- W4387560995 hasRelatedWork W946352265 @default.
- W4387560995 isParatext "false" @default.
- W4387560995 isRetracted "false" @default.
- W4387560995 workType "article" @default.