Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387561091> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387561091 abstract "We study well-posedness of degenerate mixed-type parabolic-hyperbolic equations $$partial_t u+mathrm{div}big(f(u)big)=mathcal{L}[b(u)]$$on bounded domains with general Dirichlet boundary/exterior conditions. The nonlocal diffusion operator $mathcal{L}$ can be any symmetric L{'e}vy operator (e.g. fractional Laplacians) and $b$ is nondecreasing and allowed to have degenerate regions ($b'=0$). We propose an entropy solution formulation for the problem and show uniqueness and existence of bounded entropy solutions under general assumptions. The uniqueness proof is based on the Kruv{z}kov doubling of variables technique and incorporates several a priori results derived from our entropy formulation: an $L^infty$-bound, an energy estimate, strong initial trace, weak boundary traces, and a textit{nonlocal} boundary condition. The existence proof is based on fixed point iteration for zero-order operators $mathcal{L}$, and then extended to more general operators through approximations, weak-$star$ compactness of approximate solutions $u_n$, and textit{strong} compactness of $b(u_n)$. Strong compactness follows from energy estimates and arguments we introduce to transfer weak regularity from $partial_t u_n$ to $partial_t b(u_n)$.Our work can be seen as both extending nonlocal theories from the whole space to domains and local theories on domains to the nonlocal case. Unlike local theories our formulation does not assume energy estimates. They are now a consequence of the formulation, and as opposed to previous nonlocal theories, play an essential role in our arguments. Several results of independent interest are established, including a characterization of the $mathcal{L}$'s for which the corresponding energy/Sobolev-space compactly embeds into $L^2$." @default.
- W4387561091 created "2023-10-12" @default.
- W4387561091 creator A5025746918 @default.
- W4387561091 creator A5065874554 @default.
- W4387561091 creator A5084895913 @default.
- W4387561091 creator A5087229981 @default.
- W4387561091 date "2023-10-10" @default.
- W4387561091 modified "2023-10-13" @default.
- W4387561091 title "Nonlocal degenerate parabolic hyperbolic equations on bounded domains" @default.
- W4387561091 doi "https://doi.org/10.48550/arxiv.2310.06453" @default.
- W4387561091 hasPublicationYear "2023" @default.
- W4387561091 type Work @default.
- W4387561091 citedByCount "0" @default.
- W4387561091 crossrefType "posted-content" @default.
- W4387561091 hasAuthorship W4387561091A5025746918 @default.
- W4387561091 hasAuthorship W4387561091A5065874554 @default.
- W4387561091 hasAuthorship W4387561091A5084895913 @default.
- W4387561091 hasAuthorship W4387561091A5087229981 @default.
- W4387561091 hasBestOaLocation W43875610911 @default.
- W4387561091 hasConcept C104317684 @default.
- W4387561091 hasConcept C106301342 @default.
- W4387561091 hasConcept C121332964 @default.
- W4387561091 hasConcept C134306372 @default.
- W4387561091 hasConcept C158448853 @default.
- W4387561091 hasConcept C169214877 @default.
- W4387561091 hasConcept C17020691 @default.
- W4387561091 hasConcept C182310444 @default.
- W4387561091 hasConcept C185592680 @default.
- W4387561091 hasConcept C18648836 @default.
- W4387561091 hasConcept C202444582 @default.
- W4387561091 hasConcept C2777021972 @default.
- W4387561091 hasConcept C33923547 @default.
- W4387561091 hasConcept C34388435 @default.
- W4387561091 hasConcept C37914503 @default.
- W4387561091 hasConcept C45137528 @default.
- W4387561091 hasConcept C55493867 @default.
- W4387561091 hasConcept C62354387 @default.
- W4387561091 hasConcept C62520636 @default.
- W4387561091 hasConcept C72319582 @default.
- W4387561091 hasConcept C86339819 @default.
- W4387561091 hasConceptScore W4387561091C104317684 @default.
- W4387561091 hasConceptScore W4387561091C106301342 @default.
- W4387561091 hasConceptScore W4387561091C121332964 @default.
- W4387561091 hasConceptScore W4387561091C134306372 @default.
- W4387561091 hasConceptScore W4387561091C158448853 @default.
- W4387561091 hasConceptScore W4387561091C169214877 @default.
- W4387561091 hasConceptScore W4387561091C17020691 @default.
- W4387561091 hasConceptScore W4387561091C182310444 @default.
- W4387561091 hasConceptScore W4387561091C185592680 @default.
- W4387561091 hasConceptScore W4387561091C18648836 @default.
- W4387561091 hasConceptScore W4387561091C202444582 @default.
- W4387561091 hasConceptScore W4387561091C2777021972 @default.
- W4387561091 hasConceptScore W4387561091C33923547 @default.
- W4387561091 hasConceptScore W4387561091C34388435 @default.
- W4387561091 hasConceptScore W4387561091C37914503 @default.
- W4387561091 hasConceptScore W4387561091C45137528 @default.
- W4387561091 hasConceptScore W4387561091C55493867 @default.
- W4387561091 hasConceptScore W4387561091C62354387 @default.
- W4387561091 hasConceptScore W4387561091C62520636 @default.
- W4387561091 hasConceptScore W4387561091C72319582 @default.
- W4387561091 hasConceptScore W4387561091C86339819 @default.
- W4387561091 hasLocation W43875610911 @default.
- W4387561091 hasOpenAccess W4387561091 @default.
- W4387561091 hasPrimaryLocation W43875610911 @default.
- W4387561091 hasRelatedWork W1780489256 @default.
- W4387561091 hasRelatedWork W2024346620 @default.
- W4387561091 hasRelatedWork W2050111419 @default.
- W4387561091 hasRelatedWork W2089804375 @default.
- W4387561091 hasRelatedWork W2268179544 @default.
- W4387561091 hasRelatedWork W2341131574 @default.
- W4387561091 hasRelatedWork W2381203040 @default.
- W4387561091 hasRelatedWork W2390277234 @default.
- W4387561091 hasRelatedWork W3088883651 @default.
- W4387561091 hasRelatedWork W4293505997 @default.
- W4387561091 isParatext "false" @default.
- W4387561091 isRetracted "false" @default.
- W4387561091 workType "article" @default.