Matches in SemOpenAlex for { <https://semopenalex.org/work/W43875613> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W43875613 abstract "Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties domore » not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from researchers. We propose to develop multilevel methods to model complex networks. The key point of the proposed strategy is that it will help to preserve part of the unknown structural attributes by guaranteeing the similar behavior of the real and artificial model on different scales.« less" @default.
- W43875613 created "2016-06-24" @default.
- W43875613 creator A5057164472 @default.
- W43875613 date "2012-02-24" @default.
- W43875613 modified "2023-10-14" @default.
- W43875613 title "Multilevel method for modeling large-scale networks." @default.
- W43875613 cites W1482680420 @default.
- W43875613 cites W1546413495 @default.
- W43875613 cites W1749024214 @default.
- W43875613 cites W1964212255 @default.
- W43875613 cites W1967320651 @default.
- W43875613 cites W1981893977 @default.
- W43875613 cites W1982219281 @default.
- W43875613 cites W1992021819 @default.
- W43875613 cites W1997542937 @default.
- W43875613 cites W2008620264 @default.
- W43875613 cites W2015925158 @default.
- W43875613 cites W2018049970 @default.
- W43875613 cites W2042088790 @default.
- W43875613 cites W2049820532 @default.
- W43875613 cites W2070232376 @default.
- W43875613 cites W2078174680 @default.
- W43875613 cites W2085761620 @default.
- W43875613 cites W2098930385 @default.
- W43875613 cites W2099223028 @default.
- W43875613 cites W2105808107 @default.
- W43875613 cites W2108099581 @default.
- W43875613 cites W2112090702 @default.
- W43875613 cites W2112681514 @default.
- W43875613 cites W2118953734 @default.
- W43875613 cites W2120970098 @default.
- W43875613 cites W2122595065 @default.
- W43875613 cites W2124637492 @default.
- W43875613 cites W2124923188 @default.
- W43875613 cites W2127391575 @default.
- W43875613 cites W2131183411 @default.
- W43875613 cites W2132450497 @default.
- W43875613 cites W2133286478 @default.
- W43875613 cites W2142887429 @default.
- W43875613 cites W2145374351 @default.
- W43875613 cites W2148606196 @default.
- W43875613 cites W2161984370 @default.
- W43875613 cites W2162136000 @default.
- W43875613 cites W2162309405 @default.
- W43875613 cites W2174736763 @default.
- W43875613 cites W2950627632 @default.
- W43875613 cites W2963828913 @default.
- W43875613 cites W3143219376 @default.
- W43875613 cites W338375802 @default.
- W43875613 doi "https://doi.org/10.2172/1035771" @default.
- W43875613 hasPublicationYear "2012" @default.
- W43875613 type Work @default.
- W43875613 sameAs 43875613 @default.
- W43875613 citedByCount "0" @default.
- W43875613 crossrefType "report" @default.
- W43875613 hasAuthorship W43875613A5057164472 @default.
- W43875613 hasBestOaLocation W438756132 @default.
- W43875613 hasConcept C205649164 @default.
- W43875613 hasConcept C2778755073 @default.
- W43875613 hasConcept C41008148 @default.
- W43875613 hasConcept C58640448 @default.
- W43875613 hasConceptScore W43875613C205649164 @default.
- W43875613 hasConceptScore W43875613C2778755073 @default.
- W43875613 hasConceptScore W43875613C41008148 @default.
- W43875613 hasConceptScore W43875613C58640448 @default.
- W43875613 hasLocation W438756131 @default.
- W43875613 hasLocation W438756132 @default.
- W43875613 hasLocation W438756133 @default.
- W43875613 hasOpenAccess W43875613 @default.
- W43875613 hasPrimaryLocation W438756131 @default.
- W43875613 hasRelatedWork W1596801655 @default.
- W43875613 hasRelatedWork W2130043461 @default.
- W43875613 hasRelatedWork W2350741829 @default.
- W43875613 hasRelatedWork W2358668433 @default.
- W43875613 hasRelatedWork W2376932109 @default.
- W43875613 hasRelatedWork W2382290278 @default.
- W43875613 hasRelatedWork W2390279801 @default.
- W43875613 hasRelatedWork W2748952813 @default.
- W43875613 hasRelatedWork W2899084033 @default.
- W43875613 hasRelatedWork W2530322880 @default.
- W43875613 isParatext "false" @default.
- W43875613 isRetracted "false" @default.
- W43875613 magId "43875613" @default.
- W43875613 workType "report" @default.