Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387563952> ?p ?o ?g. }
- W4387563952 endingPage "117354" @default.
- W4387563952 startingPage "117354" @default.
- W4387563952 abstract "The impact of air pollution in Chennai metropolitan city, a southern Indian coastal city was examined to predict the Air Quality Index (AQI). Regular monitoring and prediction of the Air Quality Index (AQI) are critical for combating air pollution. The current study created machine learning models such as XGBoost, Random Forest, BaggingRegressor, and LGBMRegressor for the prediction of the AQI using the historical data available from 2017 to 2022. According to historical data, the AQI is highest in January, with a mean value of 104.6 g/gm, and the lowest in August, with a mean AQI value of 63.87 g/gm. Particulate matter, gaseous pollutants, and meteorological parameters were used to predict AQI, and the heat map generated showed that of all the parameters, PM2.5 has the greatest impact on AQI, with a value of 0.91. The log transformation method is used to normalize datasets and determine skewness and kurtosis. The XGBoost model demonstrated strong performance, achieving an R2 (correlation coefficient) of 0.9935, a mean absolute error (MAE) of 0.02, a mean square error (MSE) of 0.001, and a root mean square error (RMSE) of 0.04. In comparison, the LightGBM model's prediction was less effective, as it attained an R2 of 0.9748. According to the study, the AQI in Chennai has been increasing over the last two years, and if the same conditions persist, the city's air pollution will worsen in the future. Furthermore, accurate future air quality level predictions can be made using historical data and advanced machine learning algorithms." @default.
- W4387563952 created "2023-10-13" @default.
- W4387563952 creator A5004939766 @default.
- W4387563952 creator A5009348910 @default.
- W4387563952 creator A5027817162 @default.
- W4387563952 creator A5030029710 @default.
- W4387563952 creator A5036844091 @default.
- W4387563952 creator A5061906483 @default.
- W4387563952 creator A5066783641 @default.
- W4387563952 creator A5085191698 @default.
- W4387563952 creator A5085848302 @default.
- W4387563952 creator A5086242744 @default.
- W4387563952 date "2023-12-01" @default.
- W4387563952 modified "2023-10-13" @default.
- W4387563952 title "Impact of air pollutants on climate change and prediction of air quality index using machine learning models" @default.
- W4387563952 cites W2099394962 @default.
- W4387563952 cites W2110559264 @default.
- W4387563952 cites W2277664786 @default.
- W4387563952 cites W2281680688 @default.
- W4387563952 cites W2496103838 @default.
- W4387563952 cites W2592570998 @default.
- W4387563952 cites W2888073076 @default.
- W4387563952 cites W2898886170 @default.
- W4387563952 cites W2902653484 @default.
- W4387563952 cites W2902899139 @default.
- W4387563952 cites W2911327605 @default.
- W4387563952 cites W3007246056 @default.
- W4387563952 cites W3016689974 @default.
- W4387563952 cites W3019923827 @default.
- W4387563952 cites W3040543281 @default.
- W4387563952 cites W3040876431 @default.
- W4387563952 cites W3048174475 @default.
- W4387563952 cites W3158480457 @default.
- W4387563952 cites W3211697752 @default.
- W4387563952 cites W4200026345 @default.
- W4387563952 cites W4224213039 @default.
- W4387563952 cites W4293104016 @default.
- W4387563952 cites W4293152897 @default.
- W4387563952 cites W4313352028 @default.
- W4387563952 cites W4318499396 @default.
- W4387563952 cites W4323269181 @default.
- W4387563952 cites W4378472893 @default.
- W4387563952 cites W4378639194 @default.
- W4387563952 doi "https://doi.org/10.1016/j.envres.2023.117354" @default.
- W4387563952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37821071" @default.
- W4387563952 hasPublicationYear "2023" @default.
- W4387563952 type Work @default.
- W4387563952 citedByCount "0" @default.
- W4387563952 crossrefType "journal-article" @default.
- W4387563952 hasAuthorship W4387563952A5004939766 @default.
- W4387563952 hasAuthorship W4387563952A5009348910 @default.
- W4387563952 hasAuthorship W4387563952A5027817162 @default.
- W4387563952 hasAuthorship W4387563952A5030029710 @default.
- W4387563952 hasAuthorship W4387563952A5036844091 @default.
- W4387563952 hasAuthorship W4387563952A5061906483 @default.
- W4387563952 hasAuthorship W4387563952A5066783641 @default.
- W4387563952 hasAuthorship W4387563952A5085191698 @default.
- W4387563952 hasAuthorship W4387563952A5085848302 @default.
- W4387563952 hasAuthorship W4387563952A5086242744 @default.
- W4387563952 hasConcept C105795698 @default.
- W4387563952 hasConcept C126314574 @default.
- W4387563952 hasConcept C127313418 @default.
- W4387563952 hasConcept C128990827 @default.
- W4387563952 hasConcept C139945424 @default.
- W4387563952 hasConcept C153294291 @default.
- W4387563952 hasConcept C178790620 @default.
- W4387563952 hasConcept C185592680 @default.
- W4387563952 hasConcept C18903297 @default.
- W4387563952 hasConcept C205649164 @default.
- W4387563952 hasConcept C24245907 @default.
- W4387563952 hasConcept C2780092901 @default.
- W4387563952 hasConcept C2987853052 @default.
- W4387563952 hasConcept C33923547 @default.
- W4387563952 hasConcept C39432304 @default.
- W4387563952 hasConcept C521259446 @default.
- W4387563952 hasConcept C559116025 @default.
- W4387563952 hasConcept C82685317 @default.
- W4387563952 hasConcept C86803240 @default.
- W4387563952 hasConcept C91586092 @default.
- W4387563952 hasConceptScore W4387563952C105795698 @default.
- W4387563952 hasConceptScore W4387563952C126314574 @default.
- W4387563952 hasConceptScore W4387563952C127313418 @default.
- W4387563952 hasConceptScore W4387563952C128990827 @default.
- W4387563952 hasConceptScore W4387563952C139945424 @default.
- W4387563952 hasConceptScore W4387563952C153294291 @default.
- W4387563952 hasConceptScore W4387563952C178790620 @default.
- W4387563952 hasConceptScore W4387563952C185592680 @default.
- W4387563952 hasConceptScore W4387563952C18903297 @default.
- W4387563952 hasConceptScore W4387563952C205649164 @default.
- W4387563952 hasConceptScore W4387563952C24245907 @default.
- W4387563952 hasConceptScore W4387563952C2780092901 @default.
- W4387563952 hasConceptScore W4387563952C2987853052 @default.
- W4387563952 hasConceptScore W4387563952C33923547 @default.
- W4387563952 hasConceptScore W4387563952C39432304 @default.
- W4387563952 hasConceptScore W4387563952C521259446 @default.
- W4387563952 hasConceptScore W4387563952C559116025 @default.
- W4387563952 hasConceptScore W4387563952C82685317 @default.
- W4387563952 hasConceptScore W4387563952C86803240 @default.