Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387566462> ?p ?o ?g. }
- W4387566462 endingPage "104991" @default.
- W4387566462 startingPage "104991" @default.
- W4387566462 abstract "Urban heat islands (UHIs) have been worsening, and Tokyo, Japan, is among the worst globally. The urban thermal environment requires measurement to formulate effective countermeasures. This study proposes a method for detecting roadways from infrared images of captured by a moving automobile and using deep learning to extract roadway surface temperatures from the detected roadways. Additionally, a roadway surface temperature map of Tokyo was created from 17,000 infrared images covering a route of 37 km and was then used to identify hotter and cooler areas of the city in order to validate the proposed methodology. The surface temperatures were high on wide roadways with a high sky view factor, but were lower and less variable in street canyons. Roadways perpendicular to the solar azimuth had lower temperatures due to shading by buildings. The accuracy of deep learning to detect roadway was imperfect, but a significant improvement in analytical efficiency was achieved. The method could also be applied to three-dimensional evaluation of urban surface temperatures by extracting surface temperatures for various city components, such as buildings and vegetation." @default.
- W4387566462 created "2023-10-13" @default.
- W4387566462 creator A5002756042 @default.
- W4387566462 creator A5043082996 @default.
- W4387566462 creator A5059680201 @default.
- W4387566462 creator A5059795746 @default.
- W4387566462 creator A5086343487 @default.
- W4387566462 creator A5091792043 @default.
- W4387566462 creator A5093049114 @default.
- W4387566462 date "2023-12-01" @default.
- W4387566462 modified "2023-10-17" @default.
- W4387566462 title "Visualization of urban roadway surface temperature by applying deep learning to infrared images from mobile measurements" @default.
- W4387566462 cites W1964022499 @default.
- W4387566462 cites W1996005452 @default.
- W4387566462 cites W1997514752 @default.
- W4387566462 cites W2001953380 @default.
- W4387566462 cites W2006273284 @default.
- W4387566462 cites W2045311343 @default.
- W4387566462 cites W2054489659 @default.
- W4387566462 cites W2070120612 @default.
- W4387566462 cites W2100002244 @default.
- W4387566462 cites W2102182928 @default.
- W4387566462 cites W2135016209 @default.
- W4387566462 cites W2153763028 @default.
- W4387566462 cites W2408818484 @default.
- W4387566462 cites W2570830654 @default.
- W4387566462 cites W2607177423 @default.
- W4387566462 cites W2672517635 @default.
- W4387566462 cites W2724573302 @default.
- W4387566462 cites W2725525241 @default.
- W4387566462 cites W2742174109 @default.
- W4387566462 cites W2748484989 @default.
- W4387566462 cites W2804774921 @default.
- W4387566462 cites W2902169677 @default.
- W4387566462 cites W2902646870 @default.
- W4387566462 cites W2907475719 @default.
- W4387566462 cites W2938490399 @default.
- W4387566462 cites W2941529264 @default.
- W4387566462 cites W2964011874 @default.
- W4387566462 cites W2967861706 @default.
- W4387566462 cites W2972214381 @default.
- W4387566462 cites W2985051072 @default.
- W4387566462 cites W3035952341 @default.
- W4387566462 cites W3039216919 @default.
- W4387566462 cites W3092338300 @default.
- W4387566462 cites W3093742850 @default.
- W4387566462 cites W3117670617 @default.
- W4387566462 cites W3138916888 @default.
- W4387566462 cites W3157833636 @default.
- W4387566462 cites W3158257857 @default.
- W4387566462 cites W3168299725 @default.
- W4387566462 cites W3173933139 @default.
- W4387566462 cites W3174640497 @default.
- W4387566462 cites W4200535558 @default.
- W4387566462 cites W618697077 @default.
- W4387566462 cites W918712335 @default.
- W4387566462 doi "https://doi.org/10.1016/j.scs.2023.104991" @default.
- W4387566462 hasPublicationYear "2023" @default.
- W4387566462 type Work @default.
- W4387566462 citedByCount "0" @default.
- W4387566462 crossrefType "journal-article" @default.
- W4387566462 hasAuthorship W4387566462A5002756042 @default.
- W4387566462 hasAuthorship W4387566462A5043082996 @default.
- W4387566462 hasAuthorship W4387566462A5059680201 @default.
- W4387566462 hasAuthorship W4387566462A5059795746 @default.
- W4387566462 hasAuthorship W4387566462A5086343487 @default.
- W4387566462 hasAuthorship W4387566462A5091792043 @default.
- W4387566462 hasAuthorship W4387566462A5093049114 @default.
- W4387566462 hasBestOaLocation W43875664621 @default.
- W4387566462 hasConcept C108583219 @default.
- W4387566462 hasConcept C120665830 @default.
- W4387566462 hasConcept C121332964 @default.
- W4387566462 hasConcept C121684516 @default.
- W4387566462 hasConcept C127313418 @default.
- W4387566462 hasConcept C1276947 @default.
- W4387566462 hasConcept C142724271 @default.
- W4387566462 hasConcept C153294291 @default.
- W4387566462 hasConcept C154945302 @default.
- W4387566462 hasConcept C158355884 @default.
- W4387566462 hasConcept C159737794 @default.
- W4387566462 hasConcept C177515723 @default.
- W4387566462 hasConcept C205649164 @default.
- W4387566462 hasConcept C2524010 @default.
- W4387566462 hasConcept C2776133958 @default.
- W4387566462 hasConcept C2776799497 @default.
- W4387566462 hasConcept C33923547 @default.
- W4387566462 hasConcept C36464697 @default.
- W4387566462 hasConcept C39432304 @default.
- W4387566462 hasConcept C41008148 @default.
- W4387566462 hasConcept C54005896 @default.
- W4387566462 hasConcept C58640448 @default.
- W4387566462 hasConcept C62649853 @default.
- W4387566462 hasConcept C71924100 @default.
- W4387566462 hasConcept C73329638 @default.
- W4387566462 hasConcept C84859931 @default.
- W4387566462 hasConceptScore W4387566462C108583219 @default.
- W4387566462 hasConceptScore W4387566462C120665830 @default.
- W4387566462 hasConceptScore W4387566462C121332964 @default.