Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387567440> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387567440 abstract "Malware detection constitutes a fundamental step in safe and secure computational systems, including industrial systems and the Internet of Things (IoT). Modern malware detection is based on machine learning methods that classify software samples as malware or benign, based on features that are extracted from the samples through static and/or dynamic analysis. State-of-the-art malware detection systems employ Deep Neural Networks (DNNs) whose accuracy increases as more data are analyzed and exploited. However, organizations also have significant privacy constraints and concerns which limit the data that they share with centralized security providers or other organizations, despite the malware detection accuracy improvements that can be achieved with the aggregated data. In this paper we investigate the effectiveness of federated learning (FL) methods for developing and distributing aggregated DNNs among autonomous interconnected organizations. We analyze a solution where multiple organizations use independent malware analysis platforms as part of their Security Operations Centers (SOCs) and train their own local DNN model on their own private data. Exploiting cross-silo FL, we combine these DNNs into a global one which is then distributed to all organizations, achieving the distribution of combined malware detection models using data from multiple sources without sample or feature sharing. We evaluate the approach using the EMBER benchmark dataset and demonstrate that our approach effectively reaches the same accuracy as the non-federated centralized DNN model, which is above 93%." @default.
- W4387567440 created "2023-10-13" @default.
- W4387567440 creator A5027257996 @default.
- W4387567440 creator A5073781033 @default.
- W4387567440 date "2023-09-12" @default.
- W4387567440 modified "2023-10-13" @default.
- W4387567440 title "Federated Learning in Malware Detection" @default.
- W4387567440 cites W1981221397 @default.
- W4387567440 cites W2132874238 @default.
- W4387567440 cites W2247175430 @default.
- W4387567440 cites W2800695847 @default.
- W4387567440 cites W2931858311 @default.
- W4387567440 cites W3012045403 @default.
- W4387567440 cites W3086156262 @default.
- W4387567440 cites W3086809868 @default.
- W4387567440 cites W3129207156 @default.
- W4387567440 cites W3149857249 @default.
- W4387567440 cites W3157680283 @default.
- W4387567440 cites W3175941285 @default.
- W4387567440 cites W3186817993 @default.
- W4387567440 cites W3206162503 @default.
- W4387567440 cites W3213321731 @default.
- W4387567440 cites W4206320562 @default.
- W4387567440 cites W4206724648 @default.
- W4387567440 cites W4313855661 @default.
- W4387567440 doi "https://doi.org/10.1109/etfa54631.2023.10275578" @default.
- W4387567440 hasPublicationYear "2023" @default.
- W4387567440 type Work @default.
- W4387567440 citedByCount "0" @default.
- W4387567440 crossrefType "proceedings-article" @default.
- W4387567440 hasAuthorship W4387567440A5027257996 @default.
- W4387567440 hasAuthorship W4387567440A5073781033 @default.
- W4387567440 hasConcept C119857082 @default.
- W4387567440 hasConcept C124101348 @default.
- W4387567440 hasConcept C13280743 @default.
- W4387567440 hasConcept C138885662 @default.
- W4387567440 hasConcept C154945302 @default.
- W4387567440 hasConcept C185798385 @default.
- W4387567440 hasConcept C205649164 @default.
- W4387567440 hasConcept C2776401178 @default.
- W4387567440 hasConcept C38652104 @default.
- W4387567440 hasConcept C41008148 @default.
- W4387567440 hasConcept C41895202 @default.
- W4387567440 hasConcept C52622490 @default.
- W4387567440 hasConcept C541664917 @default.
- W4387567440 hasConceptScore W4387567440C119857082 @default.
- W4387567440 hasConceptScore W4387567440C124101348 @default.
- W4387567440 hasConceptScore W4387567440C13280743 @default.
- W4387567440 hasConceptScore W4387567440C138885662 @default.
- W4387567440 hasConceptScore W4387567440C154945302 @default.
- W4387567440 hasConceptScore W4387567440C185798385 @default.
- W4387567440 hasConceptScore W4387567440C205649164 @default.
- W4387567440 hasConceptScore W4387567440C2776401178 @default.
- W4387567440 hasConceptScore W4387567440C38652104 @default.
- W4387567440 hasConceptScore W4387567440C41008148 @default.
- W4387567440 hasConceptScore W4387567440C41895202 @default.
- W4387567440 hasConceptScore W4387567440C52622490 @default.
- W4387567440 hasConceptScore W4387567440C541664917 @default.
- W4387567440 hasFunder F4320327859 @default.
- W4387567440 hasLocation W43875674401 @default.
- W4387567440 hasOpenAccess W4387567440 @default.
- W4387567440 hasPrimaryLocation W43875674401 @default.
- W4387567440 hasRelatedWork W1764168690 @default.
- W4387567440 hasRelatedWork W2378211422 @default.
- W4387567440 hasRelatedWork W2753240997 @default.
- W4387567440 hasRelatedWork W2775776836 @default.
- W4387567440 hasRelatedWork W3152891574 @default.
- W4387567440 hasRelatedWork W4232632923 @default.
- W4387567440 hasRelatedWork W4284893819 @default.
- W4387567440 hasRelatedWork W4316881845 @default.
- W4387567440 hasRelatedWork W4321353415 @default.
- W4387567440 hasRelatedWork W2097492617 @default.
- W4387567440 isParatext "false" @default.
- W4387567440 isRetracted "false" @default.
- W4387567440 workType "article" @default.