Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387568393> ?p ?o ?g. }
- W4387568393 endingPage "7069" @default.
- W4387568393 startingPage "7069" @default.
- W4387568393 abstract "In the smart grid, malicious consumers can hack their smart meters to report false power consumption readings to steal electricity. Developing a machine-learning based detector for identifying these readings is a challenge due to the unavailability of malicious datasets. Most of the existing works in the literature assume attacks to compute malicious data. These detectors are trained to identify these attacks, but they cannot identify new attacks, which creates a vulnerability. Very few papers in the literature tried to address this problem by investigating anomaly detectors trained solely on benign data, but they suffer from these limitations: (1) low detection accuracy and high false alarm; (2) the need for knowledge on the malicious data to compute good detection thresholds; and (3) they cannot capture the temporal correlations of the readings and do not address the class overlapping issue caused by some deceptive attacks. To address these limitations, this paper presents a deep support vector data description (DSVDD) based unsupervised detector for false data in smart grid. Time-series readings are transformed into images, and the detector is exclusively trained on benign images. Our experimental results demonstrate the superior performance of our detectors compared to existing approaches in the literature. Specifically, our proposed DSVDD-based schemes have exhibited improvements of 0.5% to 3% in terms of recall and 3% to 9% in terms of the Area Under the Curve (AUC) when compared to existing state-of-the-art detectors." @default.
- W4387568393 created "2023-10-13" @default.
- W4387568393 creator A5026944775 @default.
- W4387568393 creator A5052104907 @default.
- W4387568393 creator A5058105216 @default.
- W4387568393 creator A5059286446 @default.
- W4387568393 creator A5063253936 @default.
- W4387568393 creator A5068882573 @default.
- W4387568393 creator A5071309872 @default.
- W4387568393 date "2023-10-12" @default.
- W4387568393 modified "2023-10-13" @default.
- W4387568393 title "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids" @default.
- W4387568393 cites W1614668655 @default.
- W4387568393 cites W1952261593 @default.
- W4387568393 cites W2006825483 @default.
- W4387568393 cites W2134490011 @default.
- W4387568393 cites W2142047467 @default.
- W4387568393 cites W2212529815 @default.
- W4387568393 cites W2281466869 @default.
- W4387568393 cites W2312446965 @default.
- W4387568393 cites W2548283855 @default.
- W4387568393 cites W2608730641 @default.
- W4387568393 cites W2801594704 @default.
- W4387568393 cites W2803255133 @default.
- W4387568393 cites W2805467117 @default.
- W4387568393 cites W2808209024 @default.
- W4387568393 cites W2908494195 @default.
- W4387568393 cites W2909431601 @default.
- W4387568393 cites W2910992412 @default.
- W4387568393 cites W2936550528 @default.
- W4387568393 cites W2945801048 @default.
- W4387568393 cites W2948517885 @default.
- W4387568393 cites W2970705010 @default.
- W4387568393 cites W2970845521 @default.
- W4387568393 cites W2981785763 @default.
- W4387568393 cites W3001100660 @default.
- W4387568393 cites W3005548505 @default.
- W4387568393 cites W3012486647 @default.
- W4387568393 cites W3036490625 @default.
- W4387568393 cites W3088839307 @default.
- W4387568393 cites W3090158923 @default.
- W4387568393 cites W3096424616 @default.
- W4387568393 cites W3105939760 @default.
- W4387568393 cites W3116270459 @default.
- W4387568393 cites W3116466274 @default.
- W4387568393 cites W3121972055 @default.
- W4387568393 cites W3164952570 @default.
- W4387568393 cites W3185631424 @default.
- W4387568393 cites W3191262077 @default.
- W4387568393 cites W4206151196 @default.
- W4387568393 cites W4232266924 @default.
- W4387568393 cites W4281773326 @default.
- W4387568393 cites W4288062092 @default.
- W4387568393 cites W4306986986 @default.
- W4387568393 cites W4307167435 @default.
- W4387568393 cites W4310121357 @default.
- W4387568393 cites W4310147185 @default.
- W4387568393 cites W4312830606 @default.
- W4387568393 cites W4319159759 @default.
- W4387568393 cites W4319341347 @default.
- W4387568393 cites W4321500095 @default.
- W4387568393 cites W4327905086 @default.
- W4387568393 cites W4379983364 @default.
- W4387568393 cites W4382365411 @default.
- W4387568393 cites W4382468138 @default.
- W4387568393 cites W4382568073 @default.
- W4387568393 cites W4382751280 @default.
- W4387568393 cites W4382999323 @default.
- W4387568393 doi "https://doi.org/10.3390/en16207069" @default.
- W4387568393 hasPublicationYear "2023" @default.
- W4387568393 type Work @default.
- W4387568393 citedByCount "0" @default.
- W4387568393 crossrefType "journal-article" @default.
- W4387568393 hasAuthorship W4387568393A5026944775 @default.
- W4387568393 hasAuthorship W4387568393A5052104907 @default.
- W4387568393 hasAuthorship W4387568393A5058105216 @default.
- W4387568393 hasAuthorship W4387568393A5059286446 @default.
- W4387568393 hasAuthorship W4387568393A5063253936 @default.
- W4387568393 hasAuthorship W4387568393A5068882573 @default.
- W4387568393 hasAuthorship W4387568393A5071309872 @default.
- W4387568393 hasBestOaLocation W43875683931 @default.
- W4387568393 hasConcept C108583219 @default.
- W4387568393 hasConcept C119857082 @default.
- W4387568393 hasConcept C12267149 @default.
- W4387568393 hasConcept C124101348 @default.
- W4387568393 hasConcept C127413603 @default.
- W4387568393 hasConcept C154945302 @default.
- W4387568393 hasConcept C187691185 @default.
- W4387568393 hasConcept C200601418 @default.
- W4387568393 hasConcept C2524010 @default.
- W4387568393 hasConcept C2776836416 @default.
- W4387568393 hasConcept C2777212361 @default.
- W4387568393 hasConcept C2780505938 @default.
- W4387568393 hasConcept C33923547 @default.
- W4387568393 hasConcept C35525427 @default.
- W4387568393 hasConcept C38652104 @default.
- W4387568393 hasConcept C41008148 @default.
- W4387568393 hasConcept C541664917 @default.